論文の概要: A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why?
- arxiv url: http://arxiv.org/abs/2305.12920v3
- Date: Wed, 25 Oct 2023 11:56:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 11:10:33.400083
- Title: A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why?
- Title(参考訳): nlp研究におけるパラダイムシフトの2次解析--いつ、どのように、なぜ?
- Authors: Aniket Pramanick, Yufang Hou, Saif M. Mohammad, Iryna Gurevych
- Abstract要約: 本稿では、因果発見と推論技術を用いて、科学分野における研究トピックの進化を分析するための体系的な枠組みを提案する。
我々は3つの変数を定義し、NLPにおける研究トピックの進化の多様な側面を包含する。
我々は因果探索アルゴリズムを用いてこれらの変数間の因果関係を明らかにする。
- 参考スコア(独自算出の注目度): 84.46288849132634
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding the fundamental concepts and trends in a scientific field is
crucial for keeping abreast of its continuous advancement. In this study, we
propose a systematic framework for analyzing the evolution of research topics
in a scientific field using causal discovery and inference techniques. We
define three variables to encompass diverse facets of the evolution of research
topics within NLP and utilize a causal discovery algorithm to unveil the causal
connections among these variables using observational data. Subsequently, we
leverage this structure to measure the intensity of these relationships. By
conducting extensive experiments on the ACL Anthology corpus, we demonstrate
that our framework effectively uncovers evolutionary trends and the underlying
causes for a wide range of NLP research topics. Specifically, we show that
tasks and methods are primary drivers of research in NLP, with datasets
following, while metrics have minimal impact.
- Abstract(参考訳): 科学分野の基本概念と傾向を理解することは、その継続的な進歩を保ち続けるために不可欠である。
本研究では,因果発見と推論手法を用いて,科学分野における研究トピックの進化を分析するための体系的枠組みを提案する。
我々は,NLPにおける研究トピックの進化の多様な側面を包含する3つの変数を定義し,因果探索アルゴリズムを用いてこれらの変数間の因果関係を明らかにする。
その後、これらの関係の強度を測定するためにこの構造を利用する。
ACLアンソロジーコーパスに関する広範な実験を行うことにより、我々のフレームワークは、幅広いNLP研究トピックの進化的傾向と根本原因を効果的に発見できることを実証する。
具体的には、タスクとメソッドがNLPの研究の主要な要因であることを示し、データセットは従うが、メトリクスは最小限の影響を持つ。
関連論文リスト
- A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
大規模言語モデル(LLM)は、テキストやその他のデータ処理方法に革命をもたらした。
我々は,科学LLM間のクロスフィールドおよびクロスモーダル接続を明らかにすることで,研究ランドスケープのより総合的なビューを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-16T08:03:24Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Exploring the Landscape of Natural Language Processing Research [3.3916160303055567]
NLP関連のいくつかのアプローチが研究コミュニティで調査されている。
確立したトピックを分類し、傾向を特定し、今後の研究分野を概説する総合的研究はいまだに残っていない。
その結果,NLPにおける研究分野の分類,最近のNLPの発展分析,研究成果の要約,今後の研究の方向性について概説した。
論文 参考訳(メタデータ) (2023-07-20T07:33:30Z) - An information-theoretic perspective on intrinsic motivation in
reinforcement learning: a survey [0.0]
本稿では,これらの研究成果を情報理論に基づく新たな分類法を用いて調査することを提案する。
我々は、サプライズ、ノベルティ、スキル学習の概念を計算的に再考する。
我々の分析は、新規性とサプライズがトランスファー可能なスキルの階層を構築するのに役立つことを示唆している。
論文 参考訳(メタデータ) (2022-09-19T09:47:43Z) - A Review and Roadmap of Deep Learning Causal Discovery in Different
Variable Paradigms [15.483478537540385]
本稿では,原因発見タスクを変数のパラダイムに従って3つのタイプに分割する。
次に、各タスクに関する関連するデータセットと、同時に構築された最終的な因果モデルを定義し、インスタンス化する。
本稿では、因果発見分野における現在の研究ギャップについて、様々な観点からのロードマップを提案する。
論文 参考訳(メタデータ) (2022-09-14T01:52:17Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Research Topic Flows in Co-Authorship Networks [0.0]
本稿では,研究論文の著者とその研究分野間の流れを解析するためのグラフ構造を提案する。
我々の方法は、出版物のコーパス(すなわち、著者と抽象的な情報)のみを構築するために必要である。
本手法をコンピュータ科学と数学の分野で60年以上研究されてきた論文20冊の総合コーパスに適用することにより,TFNの有用性を実証する。
論文 参考訳(メタデータ) (2022-06-16T07:45:53Z) - Research topic trend prediction of scientific papers based on spatial
enhancement and dynamic graph convolution network [6.73620879761516]
近年,科学研究への社会投資の増加に伴い,様々な分野の研究成果が著しく増加している。
様々な研究テーマ間の相関関係がますます高まっているため、多数の研究テーマの間には一定の依存関係関係がある。
本稿では,ディープニューラルネットワークに基づくホットネス予測アルゴリズム,時間畳み込みネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-03-30T12:38:52Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - A Survey on Causal Inference [64.45536158710014]
因果推論は統計学、コンピュータ科学、教育、公共政策、経済学など、多くの分野において重要な研究トピックである。
観測データに対する様々な因果効果推定法が誕生した。
論文 参考訳(メタデータ) (2020-02-05T21:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。