Neural-network-designed three-qubit gates robust against charge noise
and crosstalk in silicon
- URL: http://arxiv.org/abs/2305.13132v2
- Date: Wed, 24 May 2023 15:28:25 GMT
- Title: Neural-network-designed three-qubit gates robust against charge noise
and crosstalk in silicon
- Authors: David W. Kanaar and J. P. Kestner
- Abstract summary: We numerically optimize a physics-informed neural network to produce theoretically robust shaped pulses that generate a Toffoli-equivalent gate.
The robust pulses maintain an infidelity of $10-3$ for average quasistatic fluctuations in the voltage of up to a few mV instead of tenths of mV for non-robust pulses.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin qubits in semiconductor quantum dots are a promising platform for
quantum computing, however scaling to large systems is hampered by crosstalk
and charge noise. Crosstalk here refers to the unwanted off-resonant rotation
of idle qubits during the resonant rotation of the target qubit. For a
three-qubit system with crosstalk and charge noise, it is difficult to
analytically create gate protocols that produce three-qubit gates, such as the
Toffoli gate, directly in a single shot instead of through the composition of
two-qubit gates. Therefore, we numerically optimize a physics-informed neural
network to produce theoretically robust shaped pulses that generate a
Toffoli-equivalent gate. Additionally, robust $\frac{\pi}{2}$ $X$ and CZ gates
are also presented in this work to create a universal set of gates robust
against charge noise. The robust pulses maintain an infidelity of $10^{-3}$ for
average quasistatic fluctuations in the voltage of up to a few mV instead of
tenths of mV for non-robust pulses.
Related papers
- Remote Entangling Gates for Spin Qubits in Quantum Dots using an Offset-Charge-Sensitive Transmon Coupler [0.2796197251957245]
We propose a method to realize microwave-activated CZ gates between two remote spin qubits in quantum dots.
The qubits are longitudinally coupled to the coupler, so that the transition frequency of the coupler depends on the logical qubit states.
We develop non-Markovian time-domain simulations to accurately model gate performance in the presence of $1/fbeta$ charge noise.
arXiv Detail & Related papers (2024-09-13T15:31:10Z) - Quantum optimal control robust to $1/f^α$ noises using fractional calculus: voltage-controlled exchange in semiconductor spin qubits [0.0]
Low-frequency $1/falpha$ charge noise significantly hinders the performance of voltage-controlled spin qubits in quantum dots.
Here, we utilize fractional calculus to design voltage control pulses yielding the highest average fidelities for noisy quantum gate operations.
arXiv Detail & Related papers (2024-05-21T16:46:47Z) - Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - High-fidelity three-qubit iToffoli gate for fixed-frequency
superconducting qubits [0.0]
We introduce a high-fidelity iToffoli gate based on two-qubit interactions, the so-called cross-resonance effect.
The iToffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%.
We numerically show that our gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and iToffoli gates.
arXiv Detail & Related papers (2021-08-23T17:00:16Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Single-tone pulse sequences and robust two-tone shaped pulses for three
silicon spin qubits with always-on exchange [0.0]
We show how to perform single-qubit and CZ gates in a linear chain of three spin qubits with always-on exchange coupling.
We also show how to make the CZ gate robust against both charge noise and pulse length error using a two-tone pulse shaping method.
arXiv Detail & Related papers (2021-01-21T20:24:25Z) - Modulated longitudinal gates on encoded spin-qubits via curvature
couplings to a superconducting cavity [0.0]
We propose entangling operations based on the energy curvature couplings of encoded spin qubits to a superconducting cavity.
For a two-qubit entangling gate we explore acquired geometric phases via a time-modulated longitudinal $sigma_z$-coupling.
The proposed schemes seem suitable for remote spin-to-spin entanglement of two spin-qubits or a cluster of spin-qubits.
arXiv Detail & Related papers (2020-10-03T00:04:56Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.