Disappearing Without a Trace: The Arrows of Time in Kent's Solution to
the Lorentzian Quantum Reality Problem
- URL: http://arxiv.org/abs/2305.13201v2
- Date: Tue, 4 Jul 2023 17:57:14 GMT
- Title: Disappearing Without a Trace: The Arrows of Time in Kent's Solution to
the Lorentzian Quantum Reality Problem
- Authors: Emily Adlam
- Abstract summary: Most existing proposals to explain the temporal asymmetries we see around us are sited within an approach to physics based on time evolution.
But there may be other possibilities for explaining temporal asymmetries if we don't presuppose the time evolution paradigm.
We argue that this approach potentially has the resources to explain the electromagnetic asymmetry, the thermodynamic asymmetry, the coarse-graining asymmetry, the fork asymmetry, the record asymmetry, and the cosmological asymmetry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most existing proposals to explain the temporal asymmetries we see around us
are sited within an approach to physics based on time evolution, and thus they
typically put the asymmetry in at the beginning of time in the form of a
special initial state. But there may be other possibilities for explaining
temporal asymmetries if we don't presuppose the time evolution paradigm. In
this article, we explore one such possibility, based on Kent's
`final-measurement' interpretation of quantum mechanics. We argue that this
approach potentially has the resources to explain the electromagnetic
asymmetry, the thermodynamic asymmetry, the coarse-graining asymmetry, the fork
asymmetry, the record asymmetry, and the cosmological asymmetry, and that the
explanations it offers may potentially be better than explanations appealing to
a special initial state. Our hope is that this example will encourage further
exploration of novel approaches to temporal asymmetry outside of the time
evolution paradigm.
Related papers
- Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect [0.0]
We show how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously.
In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings.
arXiv Detail & Related papers (2024-05-07T15:57:45Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Time and event symmetry in quantum mechanics [0.0]
We find that recent time symmetric interpretations of quantum mechanics fail to respect event symmetry.
We then use this model to resolve conceptual paradoxes with time symmetric quantum mechanics within an all-at-once', atemporal picture.
arXiv Detail & Related papers (2023-12-21T01:59:21Z) - An entanglement asymmetry study of black hole radiation [0.0]
Hawking's discovery that black holes can evaporate through radiation emission has posed a number of questions.
We employ entanglement asymmetry as a modern, information-based indicator of symmetry breaking.
Our findings imply that the emitted radiation is symmetric up to the Page time and then undergoes a sharp transition.
arXiv Detail & Related papers (2023-11-21T15:40:20Z) - Adiabatic Shortcuts Completion in Quantum Field Theory: Annihilation of
Created Particles [44.99833362998488]
We investigate the completion of a nonadiabatic evolution into a shortcut to adiabaticity for a quantum field confined within a one-dimensional cavity containing two movable mirrors.
We achieve a smooth extension of the Moore functions that implements the STA.
We draw attention to the existence of a comparable problem within nonrelativistic quantum mechanics.
arXiv Detail & Related papers (2023-08-25T14:19:21Z) - Measurement events relative to temporal quantum reference frames [44.99833362998488]
We compare two consistent approaches to the Page-Wootters formalism to clarify the operational meaning of evolution and measurements.
We show that for non-ideal clocks, the purified measurement approach yields time non-local, non-unitary evolution.
arXiv Detail & Related papers (2023-08-21T18:26:12Z) - The Concept of Entropic Time: A Preliminary Discussion [0.0]
The concept of entropic time is introduced on the basis of information acquisition.
The atemporal nature of the collapse' of the state vector associated with such information gain is discussed.
It is shown that energy is conserved under subjective collapse schemes whereas, in general, under objective collapse it is not.
arXiv Detail & Related papers (2020-11-01T13:40:24Z) - Emergence of Constructor-based Irreversibility in Quantum Systems:
Theory and Experiment [0.0]
We show that irreversibility in a universe with time-reversal-symmetric laws is compatible with quantum theory's time reversal symmetric laws.
We exploit a specific model, based on the universal quantum homogeniser, realised experimentally with high-quality single-photon qubits.
arXiv Detail & Related papers (2020-09-30T12:57:39Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - There is only one time [110.83289076967895]
We draw a picture of physical systems that allows us to recognize what is this thing called "time"
We derive the Schr"odinger equation in the first case, and the Hamilton equations of motion in the second one.
arXiv Detail & Related papers (2020-06-22T09:54:46Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.