Emergence of Opposing Arrows of Time in Open Quantum Systems
- URL: http://arxiv.org/abs/2311.08486v2
- Date: Thu, 30 Jan 2025 11:42:41 GMT
- Title: Emergence of Opposing Arrows of Time in Open Quantum Systems
- Authors: Thomas Guff, Chintalpati Umashankar Shastry, Andrea Rocco,
- Abstract summary: Deriving an arrow of time from time-reversal symmetric microscopic dynamics is a fundamental open problem in many areas of physics.<n>Here we focus on the derivation of the arrow of time in open quantum systems and study precisely how time-reversal symmetry is broken.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deriving an arrow of time from time-reversal symmetric microscopic dynamics is a fundamental open problem in many areas of physics, ranging from cosmology, to particle physics, to thermodynamics and statistical mechanics. Here we focus on the derivation of the arrow of time in open quantum systems and study precisely how time-reversal symmetry is broken. This derivation involves the Markov approximation applied to a system interacting with an infinite heat bath. We find that the Markov approximation does not imply a violation of time-reversal symmetry. Our results show instead that the time-reversal symmetry is maintained in the derived equations of motion. This imposes a time-symmetric formulation of quantum Brownian motion, Lindblad and Pauli master equations, which hence describe thermalisation that may occur into two opposing time directions. As a consequence, we argue that these dynamics are better described by a time-symmetric definition of Markovianity. Our results may reflect on the formulations of the arrow of time in thermodynamics, cosmology, and quantum mechanics.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Time and event symmetry in quantum mechanics [0.0]
We find that recent time symmetric interpretations of quantum mechanics fail to respect event symmetry.
We then use this model to resolve conceptual paradoxes with time symmetric quantum mechanics within an all-at-once', atemporal picture.
arXiv Detail & Related papers (2023-12-21T01:59:21Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Different routes to the classical limit of backflow [0.0]
This work is to analyze the backflow effect in the light of the underlying intrinsic decoherence and the dissipative dynamics.
In all the cases treated here, backflow is gradually suppressed as the intrinsic decoherence process is developing.
arXiv Detail & Related papers (2022-11-16T17:18:09Z) - Dynamical scaling symmetry and asymptotic quantum correlations for
time-dependent scalar fields [0.0]
In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have.
We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant.
arXiv Detail & Related papers (2022-05-26T13:20:46Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - The problem of engines in statistical physics [62.997667081978825]
Engines are open systems that can generate work cyclically, at the expense of an external disequilibrium.
Recent advances in the theory of open quantum systems point to a more realistic description of autonomous engines.
We show how the external loading force and the thermal noise may be incorporated into the relevant equations of motion.
arXiv Detail & Related papers (2021-08-17T03:59:09Z) - Geometric Heat Pump: Controlling Thermal Transport with Time-dependent
Modulations [21.544545839943446]
We review the emergence and development of this so called geometric heat pump''
The generalization from the adiabatic to the non-adiabatic regime and the application of control theory are also discussed.
arXiv Detail & Related papers (2021-06-25T14:24:42Z) - Non-Markovian dynamics under time-translation symmetry [0.0]
A dynamical symmetry is employed to determine the structure of the quantum non-Markovian time-local master equation.
We focus on time-translation symmetric dynamics, where the Lindblad jump operators constitute the eigenoperators of the free dynamics.
arXiv Detail & Related papers (2021-06-09T18:00:05Z) - Time Reversal Symmetry for Classical, Nonrelativistic Quantum and Spin
Systems in Presence of Magnetic Fields [0.0]
We extend to quantum mechanical systems results previously obtained for classical mechanical systems.
The quantum systems treated here are nonrelativistic, and are described by the Schr"odinger equation or the Pauli equation.
arXiv Detail & Related papers (2021-04-28T13:56:30Z) - On the Problem of Time(s) in Quantum Mechanics and Quantum Gravity:
recent integrating developments and outlook [0.0]
How to restore time is the Problem of Time(s)
It introduces an intrinsic time property tau associated with the mass of the system.
It invalidates Pauli's objection to the existence of a time operator.
arXiv Detail & Related papers (2021-04-20T17:51:05Z) - Quantum superposition of thermodynamic evolutions with opposing time's
arrows [0.0]
We show that a definite thermodynamic time's arrow can be restored by a quantum measurement of entropy production.
Remarkably, for small values, the amplitudes of forward and time-reversal processes can interfere.
arXiv Detail & Related papers (2020-08-06T18:00:38Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Time-dependence in non-Hermitian quantum systems [0.0]
We present a coherent and consistent framework for explicit time-dependence in non-Hermitian quantum mechanics.
We create an elegant framework for Darboux and Darboux/Crum for time-dependent non-Hermitian Hamiltonians.
arXiv Detail & Related papers (2020-02-05T20:19:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.