MAGE: Machine-generated Text Detection in the Wild
- URL: http://arxiv.org/abs/2305.13242v3
- Date: Tue, 21 May 2024 04:21:53 GMT
- Title: MAGE: Machine-generated Text Detection in the Wild
- Authors: Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Zhilin Wang, Longyue Wang, Linyi Yang, Shuming Shi, Yue Zhang,
- Abstract summary: Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
- Score: 82.70561073277801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection to mitigate risks like the spread of fake news and plagiarism. Existing research has been constrained by evaluating detection methods on specific domains or particular language models. In practical scenarios, however, the detector faces texts from various domains or LLMs without knowing their sources. To this end, we build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs. Empirical results show challenges in distinguishing machine-generated texts from human-authored ones across various scenarios, especially out-of-distribution. These challenges are due to the decreasing linguistic distinctions between the two sources. Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios. We release our resources at https://github.com/yafuly/MAGE.
Related papers
- Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
Large language models (LLMs) have transformed human writing by enhancing grammar correction, content expansion, and stylistic refinement.
Existing detection methods, which mainly rely on single-feature analysis and binary classification, often fail to effectively identify LLM-generated text in academic contexts.
We propose a novel Multi-level Fine-grained Detection framework that detects LLM-generated text by integrating low-level structural, high-level semantic, and deep-level linguistic features.
arXiv Detail & Related papers (2024-10-18T07:25:00Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts [10.027843402296678]
This paper constructs a comprehensive benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors.
We categorize text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate.
For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance.
arXiv Detail & Related papers (2024-06-13T12:43:40Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
We explore advanced Large Language Models (LLMs) and their specialized variants, contributing to this field in several ways.
We uncover a significant correlation between topics and detection performance.
These investigations shed light on the adaptability and robustness of these detection methods across diverse topics.
arXiv Detail & Related papers (2023-12-20T10:53:53Z) - AI-generated text boundary detection with RoFT [7.2286849324485445]
We study how to detect the boundary between human-written and machine-generated parts of texts.
In particular, we find that perplexity-based approaches to boundary detection tend to be more robust to peculiarities of domain-specific data than supervised fine-tuning of the RoBERTa model.
arXiv Detail & Related papers (2023-11-14T17:48:19Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
Unregulated use of LLMs can potentially lead to malicious consequences such as plagiarism, generating fake news, spamming, etc.
Recent works attempt to tackle this problem either using certain model signatures present in the generated text outputs or by applying watermarking techniques.
In this paper, we show that these detectors are not reliable in practical scenarios.
arXiv Detail & Related papers (2023-03-17T17:53:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.