Improving Polish to English Neural Machine Translation with Transfer
Learning: Effects of Data Volume and Language Similarity
- URL: http://arxiv.org/abs/2306.00660v1
- Date: Thu, 1 Jun 2023 13:34:21 GMT
- Title: Improving Polish to English Neural Machine Translation with Transfer
Learning: Effects of Data Volume and Language Similarity
- Authors: Juuso Eronen, Michal Ptaszynski, Karol Nowakowski, Zheng Lin Chia,
Fumito Masui
- Abstract summary: We investigate the impact of data volume and the use of similar languages on transfer learning in a machine translation task.
We fine-tune mBART model for a Polish-English translation task using the OPUS-100 dataset.
Our experiments show that a combination of related languages and larger amounts of data outperforms the model trained on related languages or larger amounts of data alone.
- Score: 2.4674086273775035
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper investigates the impact of data volume and the use of similar
languages on transfer learning in a machine translation task. We find out that
having more data generally leads to better performance, as it allows the model
to learn more patterns and generalizations from the data. However, related
languages can also be particularly effective when there is limited data
available for a specific language pair, as the model can leverage the
similarities between the languages to improve performance. To demonstrate, we
fine-tune mBART model for a Polish-English translation task using the OPUS-100
dataset. We evaluate the performance of the model under various transfer
learning configurations, including different transfer source languages and
different shot levels for Polish, and report the results. Our experiments show
that a combination of related languages and larger amounts of data outperforms
the model trained on related languages or larger amounts of data alone.
Additionally, we show the importance of related languages in zero-shot and
few-shot configurations.
Related papers
- Continual Learning Under Language Shift [6.0783165755651325]
We study the pros and cons of updating a language model when new data comes from new languages.
We investigate how forward and backward transfer effects depend on pre-training order and characteristics of languages.
arXiv Detail & Related papers (2023-11-02T12:54:50Z) - GradSim: Gradient-Based Language Grouping for Effective Multilingual
Training [13.730907708289331]
We propose GradSim, a language grouping method based on gradient similarity.
Our experiments on three diverse multilingual benchmark datasets show that it leads to the largest performance gains.
Besides linguistic features, the topics of the datasets play an important role for language grouping.
arXiv Detail & Related papers (2023-10-23T18:13:37Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
Multilingual large language models (MLLMs) are jointly trained on data from many different languages.
It remains unclear to what extent, and under which conditions, languages rely on each other's data.
We find that MLLMs rely on data from multiple languages from the early stages of fine-tuning and that this reliance gradually increases as fine-tuning progresses.
arXiv Detail & Related papers (2023-05-22T17:47:41Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
Existing machine translation (NMT) studies mainly focus on developing dataset-specific models.
We propose a versatile'' model, i.e., the Unified Model Learning for NMT (UMLNMT) that works with data from different tasks.
OurNMT results in substantial improvements over dataset-specific models with significantly reduced model deployment costs.
arXiv Detail & Related papers (2023-05-04T12:21:52Z) - Languages You Know Influence Those You Learn: Impact of Language
Characteristics on Multi-Lingual Text-to-Text Transfer [4.554080966463776]
Multi-lingual language models (LM) have been remarkably successful in enabling natural language tasks in low-resource languages.
We try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages.
A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer.
arXiv Detail & Related papers (2022-12-04T07:22:21Z) - Language Agnostic Multilingual Information Retrieval with Contrastive
Learning [59.26316111760971]
We present an effective method to train multilingual information retrieval systems.
We leverage parallel and non-parallel corpora to improve the pretrained multilingual language models.
Our model can work well even with a small number of parallel sentences.
arXiv Detail & Related papers (2022-10-12T23:53:50Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
We create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages.
We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining.
Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT.
arXiv Detail & Related papers (2020-10-21T17:01:23Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.