3D Molecular Geometry Analysis with 2D Graphs
- URL: http://arxiv.org/abs/2305.13315v1
- Date: Mon, 1 May 2023 19:00:46 GMT
- Title: 3D Molecular Geometry Analysis with 2D Graphs
- Authors: Zhao Xu, Yaochen Xie, Youzhi Luo, Xuan Zhang, Xinyi Xu, Meng Liu,
Kaleb Dickerson, Cheng Deng, Maho Nakata, Shuiwang Ji
- Abstract summary: Ground-state 3D geometries of molecules are essential for many molecular analysis tasks.
Modern quantum mechanical methods can compute accurate 3D geometries but are computationally prohibitive.
We propose a novel deep learning framework to predict 3D geometries from molecular graphs.
- Score: 79.47097907673877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ground-state 3D geometries of molecules are essential for many molecular
analysis tasks. Modern quantum mechanical methods can compute accurate 3D
geometries but are computationally prohibitive. Currently, an efficient
alternative to computing ground-state 3D molecular geometries from 2D graphs is
lacking. Here, we propose a novel deep learning framework to predict 3D
geometries from molecular graphs. To this end, we develop an equilibrium
message passing neural network (EMPNN) to better capture ground-state
geometries from molecular graphs. To provide a testbed for 3D molecular
geometry analysis, we develop a benchmark that includes a large-scale molecular
geometry dataset, data splits, and evaluation protocols. Experimental results
show that EMPNN can efficiently predict more accurate ground-state 3D
geometries than RDKit and other deep learning methods. Results also show that
the proposed framework outperforms self-supervised learning methods on property
prediction tasks.
Related papers
- Geometry Informed Tokenization of Molecules for Language Model Generation [85.80491667588923]
We consider molecule generation in 3D space using language models (LMs)
Although tokenization of molecular graphs exists, that for 3D geometries is largely unexplored.
We propose the Geo2Seq, which converts molecular geometries into $SE(3)$-invariant 1D discrete sequences.
arXiv Detail & Related papers (2024-08-19T16:09:59Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - Automated 3D Pre-Training for Molecular Property Prediction [54.15788181794094]
We propose a novel 3D pre-training framework (dubbed 3D PGT)
It pre-trains a model on 3D molecular graphs, and then fine-tunes it on molecular graphs without 3D structures.
Extensive experiments on 2D molecular graphs are conducted to demonstrate the accuracy, efficiency and generalization ability of the proposed 3D PGT.
arXiv Detail & Related papers (2023-06-13T14:43:13Z) - Geometry-Complete Diffusion for 3D Molecule Generation and Optimization [3.8366697175402225]
We introduce the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation.
GCDM outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings.
We also show that GCDM's geometric features can be repurposed to consistently optimize the geometry and chemical composition of existing 3D molecules.
arXiv Detail & Related papers (2023-02-08T20:01:51Z) - 3D Infomax improves GNNs for Molecular Property Prediction [1.9703625025720701]
We propose pre-training a model to reason about the geometry of molecules given only their 2D molecular graphs.
We show that 3D pre-training provides significant improvements for a wide range of properties.
arXiv Detail & Related papers (2021-10-08T13:30:49Z) - Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular
Graphs [79.06686274377009]
We develop a benchmark, known as Molecule3D, that includes a dataset with precise ground-state geometries of approximately 4 million molecules.
We implement two baseline methods that either predict the pairwise distance between atoms or atom coordinates in 3D space.
Our method can achieve comparable prediction accuracy but with much smaller computational costs.
arXiv Detail & Related papers (2021-09-30T22:09:28Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.