Geometry Informed Tokenization of Molecules for Language Model Generation
- URL: http://arxiv.org/abs/2408.10120v1
- Date: Mon, 19 Aug 2024 16:09:59 GMT
- Title: Geometry Informed Tokenization of Molecules for Language Model Generation
- Authors: Xiner Li, Limei Wang, Youzhi Luo, Carl Edwards, Shurui Gui, Yuchao Lin, Heng Ji, Shuiwang Ji,
- Abstract summary: We consider molecule generation in 3D space using language models (LMs)
Although tokenization of molecular graphs exists, that for 3D geometries is largely unexplored.
We propose the Geo2Seq, which converts molecular geometries into $SE(3)$-invariant 1D discrete sequences.
- Score: 85.80491667588923
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider molecule generation in 3D space using language models (LMs), which requires discrete tokenization of 3D molecular geometries. Although tokenization of molecular graphs exists, that for 3D geometries is largely unexplored. Here, we attempt to bridge this gap by proposing the Geo2Seq, which converts molecular geometries into $SE(3)$-invariant 1D discrete sequences. Geo2Seq consists of canonical labeling and invariant spherical representation steps, which together maintain geometric and atomic fidelity in a format conducive to LMs. Our experiments show that, when coupled with Geo2Seq, various LMs excel in molecular geometry generation, especially in controlled generation tasks.
Related papers
- A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries.
We propose a novel and principled method for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM)
arXiv Detail & Related papers (2023-05-02T01:07:22Z) - 3D Molecular Geometry Analysis with 2D Graphs [79.47097907673877]
Ground-state 3D geometries of molecules are essential for many molecular analysis tasks.
Modern quantum mechanical methods can compute accurate 3D geometries but are computationally prohibitive.
We propose a novel deep learning framework to predict 3D geometries from molecular graphs.
arXiv Detail & Related papers (2023-05-01T19:00:46Z) - Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular
Graphs [79.06686274377009]
We develop a benchmark, known as Molecule3D, that includes a dataset with precise ground-state geometries of approximately 4 million molecules.
We implement two baseline methods that either predict the pairwise distance between atoms or atom coordinates in 3D space.
Our method can achieve comparable prediction accuracy but with much smaller computational costs.
arXiv Detail & Related papers (2021-09-30T22:09:28Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.