Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates
- URL: http://arxiv.org/abs/2305.13409v4
- Date: Fri, 5 Apr 2024 02:26:02 GMT
- Title: Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates
- Authors: Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang,
- Abstract summary: We give a pair of algorithms that efficiently learn a quantum state prepared by Clifford gates and $O(log n)$ non-Clifford gates.
Specifically, for an $n$-qubit state $|psirangle$ prepared with at most $t$ non-Clifford gates, our algorithms use $mathsfpoly(n,2t,1/varepsilon)$ time and copies of $|psirangle$ to learn $|psirangle$ to trace distance at most gates.
- Score: 0.43123403062068827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give a pair of algorithms that efficiently learn a quantum state prepared by Clifford gates and $O(\log n)$ non-Clifford gates. Specifically, for an $n$-qubit state $|\psi\rangle$ prepared with at most $t$ non-Clifford gates, our algorithms use $\mathsf{poly}(n,2^t,1/\varepsilon)$ time and copies of $|\psi\rangle$ to learn $|\psi\rangle$ to trace distance at most $\varepsilon$. The first algorithm for this task is more efficient, but requires entangled measurements across two copies of $|\psi\rangle$. The second algorithm uses only single-copy measurements at the cost of polynomial factors in runtime and sample complexity. Our algorithms more generally learn any state with sufficiently large stabilizer dimension, where a quantum state has stabilizer dimension $k$ if it is stabilized by an abelian group of $2^k$ Pauli operators. We also develop an efficient property testing algorithm for stabilizer dimension, which may be of independent interest.
Related papers
- A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - A Quantum Approximation Scheme for k-Means [0.16317061277457]
We give a quantum approximation scheme for the classical $k$-means clustering problem in the QRAM model.
Our quantum algorithm runs in time $tildeO left( 2tildeO(frackvarepsilon) eta2 dright)$.
Unlike previous works on unsupervised learning, our quantum algorithm does not require quantum linear algebra subroutines.
arXiv Detail & Related papers (2023-08-16T06:46:37Z) - Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates II: Single-Copy Measurements [0.43123403062068827]
Recent work has shown that $n$-qubit quantum states output by circuits with at most $t$ single-qubit non-Clifford gates can be learned to trace distance $epsilon$ using $mathsfpoly(n,2t,1/epsilon)$ time and samples.
In this work, we give a similarly efficient algorithm that learns the same class of states using only single-copy measurements.
arXiv Detail & Related papers (2023-08-14T14:32:42Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Improved Stabilizer Estimation via Bell Difference Sampling [0.43123403062068827]
We study the complexity of learning quantum states in various models with respect to the stabilizer formalism.
We prove that $Omega(n)$ $T$gates are necessary for any Clifford+$T$ circuit to prepare pseudorandom quantum states.
We show that a modification of the above algorithm runs in time.
arXiv Detail & Related papers (2023-04-27T01:58:28Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - How to simulate quantum measurement without computing marginals [3.222802562733787]
We describe and analyze algorithms for classically computation measurement of an $n$-qubit quantum state $psi$ in the standard basis.
Our algorithms reduce the sampling task to computing poly(n)$ amplitudes of $n$-qubit states.
arXiv Detail & Related papers (2021-12-15T21:44:05Z) - Fast estimation of outcome probabilities for quantum circuits [0.0]
We present two classical algorithms for the simulation of universal quantum circuits on $n$ qubits.
Our algorithms complement each other by performing best in different parameter regimes.
We provide a C+Python implementation of our algorithms and benchmark them using random circuits.
arXiv Detail & Related papers (2021-01-28T19:00:04Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.