Quantum state manipulation and cooling of ultracold molecules
- URL: http://arxiv.org/abs/2305.13445v2
- Date: Wed, 22 May 2024 20:24:30 GMT
- Title: Quantum state manipulation and cooling of ultracold molecules
- Authors: Tim Langen, Giacomo Valtolina, Dajun Wang, Jun Ye,
- Abstract summary: Two widely employed cooling techniques have brought molecular gases into the quantum regime.
These advances have brought into reality our capability to prepare and manipulate both internal and external states of molecules quantum mechanically.
- Score: 0.49789822859103633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An increasingly large variety of molecular species are being cooled down to low energies in recent years, and innovative ideas and powerful techniques continue to emerge to gain ever more precise control of molecular motion. In this brief review we focus our discussions on two widely employed cooling techniques that have brought molecular gases into the quantum regime: association of ultracold atomic gases into quantum gases of molecules and direct laser cooling of molecules. These advances have brought into reality our capability to prepare and manipulate both internal and external states of molecules quantum mechanically, opening the field of cold molecules to a wide range of scientific explorations.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Quantum state tracking and control of a single molecular ion in a thermal environment [4.600707934773013]
We report real-time observations of thermal radiation-driven transitions between individual states of a single molecule.
We reversed these "jumps" through microwave-driven transitions, resulting in a twentyfold improvement in the time the molecule dwells in a chosen state.
arXiv Detail & Related papers (2023-12-28T16:29:31Z) - Efficient Reduction of Casimir Forces by Self-assembled Bio-molecular
Thin Films [62.997667081978825]
Casimir forces, related to London-van der Waals forces, arise if the spectrum of electromagnetic fluctuations is restricted by boundaries.
We experimentally investigate the influence of self-assembled molecular bio and organic thin films on the Casimir force between a plate and a sphere.
We find that molecular thin films, despite being a mere few nanometers thick, reduce the Casimir force by up to 14%.
arXiv Detail & Related papers (2023-06-28T13:44:07Z) - Dynamics of molecular rotors in bulk superfluid helium [68.8204255655161]
We report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid $4mathrmHe$ bath at variable temperature.
The observed temperature dependence suggests a non-equilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound.
arXiv Detail & Related papers (2023-04-08T01:22:19Z) - Quantum control of molecules for fundamental physics [0.0]
Laser cooling, trapping, and coherent manipulation of atoms has energized the efforts in extending this exquisite control to molecules.
The control of their quantum states offers unparalleled access to fundamental constants and possible physics beyond the Standard Model.
arXiv Detail & Related papers (2022-04-26T15:12:01Z) - Molecular-ion quantum technologies [0.0]
The ability to control molecular ions on the quantum level via a co-trapped atomic ion offers intriguing possibilities for new experiments.
The present article gives an overview of the basic experimental methods, recent developments and prospects in this field.
arXiv Detail & Related papers (2022-04-19T11:30:19Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - An optical tweezer array of ground-state polar molecules [2.3550230036322337]
Internal and motional state controlled and individually manipulable polar molecules are desirable for many quantum science applications.
We extend the technique to an array of five molecules, unlocking the ability to study molecular interactions.
arXiv Detail & Related papers (2021-12-02T05:32:41Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Molecular Collisions: from Near-cold to Ultra-cold [6.2646642083846436]
Cold and ultracold molecules have provided cutting-edge experiments for studying collision physics.
Recent explosion of interest in the molecular collisions has been sparked by dramatic progress of experimental capabilities.
Authors review studies for exploring the nature of molecular collisions occurring at temperatures ranging from the Kelvin to the nanoKelvin regime.
arXiv Detail & Related papers (2020-12-18T19:16:24Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.