論文の概要: Neural Machine Translation for Code Generation
- arxiv url: http://arxiv.org/abs/2305.13504v1
- Date: Mon, 22 May 2023 21:43:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 20:30:36.689053
- Title: Neural Machine Translation for Code Generation
- Title(参考訳): コード生成のためのニューラルマシン翻訳
- Authors: Dharma KC, Clayton T. Morrison
- Abstract要約: コード生成のためのNMTでは、入力で表現された制約を満たすソースコードを生成する。
本稿では,コード生成文献のNMTを調査し,これまで検討されてきた様々な手法のカタログ化を行う。
本稿では,既存手法の限界と今後の研究方向性について論じる。
- 参考スコア(独自算出の注目度): 0.7607163273993514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural machine translation (NMT) methods developed for natural language
processing have been shown to be highly successful in automating translation
from one natural language to another. Recently, these NMT methods have been
adapted to the generation of program code. In NMT for code generation, the task
is to generate output source code that satisfies constraints expressed in the
input. In the literature, a variety of different input scenarios have been
explored, including generating code based on natural language description,
lower-level representations such as binary or assembly (neural decompilation),
partial representations of source code (code completion and repair), and source
code in another language (code translation). In this paper we survey the NMT
for code generation literature, cataloging the variety of methods that have
been explored according to input and output representations, model
architectures, optimization techniques used, data sets, and evaluation methods.
We discuss the limitations of existing methods and future research directions
- Abstract(参考訳): 自然言語処理のために開発されたニューラル機械翻訳(NMT)は、ある自然言語から別の自然言語への翻訳を自動化することに成功している。
近年,これらのNMT法はプログラムコードの生成に適応している。
コード生成のためのNMTでは、入力で表現された制約を満たす出力ソースコードを生成する。
文献では、自然言語記述に基づくコード生成、バイナリやアセンブリなどの低レベル表現(神経脱コンパイル)、ソースコードの部分表現(コード補完と修復)、他言語のソースコード(コード翻訳)など、さまざまな入力シナリオが検討されている。
本稿では,コード生成文献のNMTを調査し,入力および出力表現,モデルアーキテクチャ,使用する最適化手法,データセット,評価手法に基づいて探索された様々な手法のカタログ化を行う。
既存手法の限界と今後の研究方向性について論じる。
関連論文リスト
- Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - Code-Mixed Probes Show How Pre-Trained Models Generalise On Code-Switched Text [1.9185059111021852]
事前学習された言語モデルが3次元のコードスイッチトテキストをどのように扱うかを検討する。
その結果,事前学習した言語モデルは,コードスイッチトテキストへの一般化に有効であることが判明した。
論文 参考訳(メタデータ) (2024-03-07T19:46:03Z) - Neural Models for Source Code Synthesis and Completion [0.0]
コード提案システムへの自然言語(NL)は、NL発話をコンパイル可能なコードスニペットに変換することで、統合開発環境(IDE)の開発者を支援する。
現在のアプローチは主に意味解析に基づくハードコードなルールベースのシステムである。
我々は,NLを汎用プログラミング言語にマッピングするためのシーケンス・ツー・シーケンス深層学習モデルと訓練パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-08T17:10:12Z) - Summarize and Generate to Back-translate: Unsupervised Translation of
Programming Languages [86.08359401867577]
バックトランスレーションは、並列データがほとんど、あるいは全く利用できない場合のニューラルマシン翻訳の有効性で広く知られている。
コード要約と生成による逆翻訳を提案する。
提案手法は最先端の手法と競合することを示す。
論文 参考訳(メタデータ) (2022-05-23T08:20:41Z) - Quality-Aware Decoding for Neural Machine Translation [64.24934199944875]
ニューラルネットワーク翻訳(NMT)のための品質認識復号法を提案する。
参照フリーおよび参照ベースMT評価における最近のブレークスルーを,様々な推論手法を用いて活用する。
品質認識復号化は、最先端の自動測定値と人的評価値の両方で、MAPベースの復号化を一貫して上回ります。
論文 参考訳(メタデータ) (2022-05-02T15:26:28Z) - Using Document Similarity Methods to create Parallel Datasets for Code
Translation [60.36392618065203]
あるプログラミング言語から別のプログラミング言語へのソースコードの翻訳は、重要で時間を要する作業です。
本稿では、文書類似性手法を用いて、ノイズの多い並列データセットを作成することを提案する。
これらのモデルは、妥当なレベルのノイズに対して、地上の真実に基づいて訓練されたモデルと相容れない性能を示す。
論文 参考訳(メタデータ) (2021-10-11T17:07:58Z) - Retrieve and Refine: Exemplar-based Neural Comment Generation [27.90756259321855]
同様のコードスニペットのコメントはコメントの生成に役立ちます。
我々は、与えられたコード、AST、類似したコード、そして入力として見劣りする新しいセク2seqニューラルネットワークを設計する。
約200万のサンプルを含む大規模Javaコーパスに対するアプローチを評価した。
論文 参考訳(メタデータ) (2020-10-09T09:33:10Z) - Incorporating External Knowledge through Pre-training for Natural
Language to Code Generation [97.97049697457425]
オープンドメインコード生成は、自然言語(NL)の意図から汎用プログラミング言語でコードを生成することを目的としている。
オンラインプログラミングQAフォーラムStackOverflowとプログラミング言語APIドキュメントからNL-codeペアを自動的にマイニングする。
評価の結果,2つのソースとデータ拡張と検索ベースデータ再サンプリングを組み合わせることで,コード生成テストベッドCoNaLa上でのBLEUスコアが最大2.2%向上することがわかった。
論文 参考訳(メタデータ) (2020-04-20T01:45:27Z) - DeepSumm -- Deep Code Summaries using Neural Transformer Architecture [8.566457170664927]
我々はソースコード要約の課題を解決するためにニューラルネットワークを用いる。
2.1m以上のコメントとコードの教師付きサンプルで、トレーニング時間を50%以上短縮します。
論文 参考訳(メタデータ) (2020-03-31T22:43:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。