論文の概要: Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration
- arxiv url: http://arxiv.org/abs/2305.13626v2
- Date: Sat, 14 Oct 2023 06:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 05:10:18.827384
- Title: Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration
- Title(参考訳): プロアクティブ対話のための大規模言語モデルの提案と評価:明確化、目標誘導、非協調
- Authors: Yang Deng, Lizi Liao, Liang Chen, Hongru Wang, Wenqiang Lei, Tat-Seng
Chua
- Abstract要約: 本研究は, 明瞭化, 目標誘導, 非協調対話の3つの側面に焦点をあてる。
LLMの能動性を高めるために,プロアクティブ・チェーン・オブ・ソート・プロンプト方式を提案する。
- 参考スコア(独自算出の注目度): 72.04629217161656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational systems based on Large Language Models (LLMs), such as
ChatGPT, show exceptional proficiency in context understanding and response
generation. However, despite their impressive capabilities, they still possess
limitations, such as providing randomly-guessed answers to ambiguous queries or
failing to refuse users' requests, both of which are considered aspects of a
conversational agent's proactivity. This raises the question of whether
LLM-based conversational systems are equipped to handle proactive dialogue
problems. In this work, we conduct a comprehensive analysis of LLM-based
conversational systems, specifically focusing on three aspects of proactive
dialogue systems: clarification, target-guided, and non-collaborative
dialogues. To trigger the proactivity of LLMs, we propose the Proactive
Chain-of-Thought prompting scheme, which augments LLMs with the goal planning
capability over descriptive reasoning chains. Empirical findings are discussed
to promote future studies on LLM-based proactive dialogue systems.
- Abstract(参考訳): ChatGPTのようなLarge Language Models (LLM)に基づく会話システムは、文脈理解と応答生成において例外的な習熟度を示す。
しかし、その見事な能力にもかかわらず、あいまいなクエリに対してランダムにゲーミングされた回答を提供したり、ユーザの要求を拒否しなかったりといった制限がある。
これにより,LLMに基づく対話システムでは,対話の問題に対処できるかどうかが疑問視される。
本研究では,llmに基づく対話システムの包括的分析を行い,特に,対話の明確化,目標誘導,非協調対話の3つの側面に着目した。
LLMの能動性を高めるために,記述的推論チェーンよりも目標計画能力でLCMを増強するProactive Chain-of-Thought prompting schemeを提案する。
LLMに基づくプロアクティブ対話システムの今後の研究を促進するために,実証的な研究結果が議論されている。
関連論文リスト
- Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training [33.57497419019826]
アクションベースのコントラスト自己学習は、多ターン会話におけるサンプル効率のよい対話ポリシー学習を可能にする。
ACTは、教師付き微調整とDPOのための標準的なアプローチよりも、相当な会話モデリングの改善を示す。
論文 参考訳(メタデータ) (2024-05-31T22:44:48Z) - A Survey on Recent Advances in LLM-Based Multi-turn Dialogue Systems [12.999001024463453]
本稿では,既存のLLMの概要と,下流タスクにLLMを適用するためのアプローチを提案する。
LLMベースのオープンドメイン対話(ODD)とタスク指向対話(TOD)の両方をカバーするマルチターン対話システムにおける最近の進歩を詳述する。
論文 参考訳(メタデータ) (2024-02-28T03:16:44Z) - Reasoning in Conversation: Solving Subjective Tasks through Dialogue
Simulation for Large Language Models [56.93074140619464]
本稿では,対話シミュレーションによる主観的課題の解決に焦点を当てたRiC(Reasoning in Conversation)を提案する。
RiCのモチベーションは、チェーン・オブ・ソート・スタイルの合理性を提供するのではなく、対話をシミュレートすることで有用な文脈情報をマイニングすることである。
GPT-4、ChatGPT、OpenChatなど、APIベースのLLMとオープンソースのLLMの両方を12のタスクで評価する。
論文 参考訳(メタデータ) (2024-02-27T05:37:10Z) - Are LLMs Effective Negotiators? Systematic Evaluation of the Multifaceted Capabilities of LLMs in Negotiation Dialogues [4.738985706520995]
本研究の目的は,多様な対話シナリオにまたがるLLMの多面的特徴を体系的に解析することである。
本分析では,GPT-4の課題を特定しながら,多くのタスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-21T06:11:03Z) - Plug-and-Play Policy Planner for Large Language Model Powered Dialogue
Agents [121.46051697742608]
そこで本稿では,PDPPという言語モデルプラグインを用いて対話問題を整理するための新たな対話ポリシー計画パラダイムを提案する。
具体的には、利用可能な人間の注釈付きデータに対する教師付き微調整を容易にするための新しいトレーニングフレームワークを開発する。
PPDPPは3つの異なるプロアクティブな対話アプリケーションにおいて、既存のアプローチを一貫して、実質的に上回っている。
論文 参考訳(メタデータ) (2023-11-01T03:20:16Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
我々は、よりパーソナライズされ魅力的な応答を提供するために、新しい言語的キューに基づく思考の連鎖(textitCue-CoT)を提案する。
中国語と英語の6つのデータセットからなる詳細な対話質問を用いたベンチマークを構築した。
実験により,提案手法は,すべてのデータセットにおいて,テクステルパーフルネスとテクスチタアクセプタビリティの両方の観点から,標準的プロンプト法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:27:43Z) - A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects [100.75759050696355]
本稿では,対話エージェントの多種多様な対話における能動性に関する顕著な問題と先進的な設計について概説する。
我々は、現実世界のアプリケーションのニーズを満たすが、将来もっと研究に焦点を当てる必要がある課題について議論する。
論文 参考訳(メタデータ) (2023-05-04T11:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。