InstructAlign: High-and-Low Resource Language Alignment via Continual
Crosslingual Instruction Tuning
- URL: http://arxiv.org/abs/2305.13627v2
- Date: Tue, 24 Oct 2023 08:08:33 GMT
- Title: InstructAlign: High-and-Low Resource Language Alignment via Continual
Crosslingual Instruction Tuning
- Authors: Samuel Cahyawijaya, Holy Lovenia, Tiezheng Yu, Willy Chung, Pascale
Fung
- Abstract summary: Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages.
However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data.
We propose InstructAlign which uses continual crosslingual instruction tuning to enable LLMs to align new unseen languages with previously learned high-resource languages.
- Score: 66.31509106146605
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLMs) that are tuned with instructions have
demonstrated remarkable capabilities in various tasks and languages. However,
their ability to generalize to underrepresented languages is limited due to the
scarcity of available data. Additionally, directly adapting new languages to
instruction-tuned LLMs can result in catastrophic forgetting, which leads to
the loss of multitasking ability. To address this issue, we propose
InstructAlign which uses continual crosslingual instruction tuning to enable
LLMs to align new unseen languages with previously learned high-resource
languages. Our results demonstrate the effectiveness of InstructAlign in
enabling the model to understand low-resource languages with limited parallel
data while preventing catastrophic forgetting. Our work contributes to the
advancement of language adaptation methods, particularly for adapting
instruction-tuned LLMs to underrepresented languages. Our code is released on
https://github.com/HLTCHKUST/InstructAlign
Related papers
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
Large Language Models (LLMs) have shown impressive language capabilities.
In this work, we investigate the spontaneous multilingual alignment improvement of LLMs.
We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages.
arXiv Detail & Related papers (2024-05-22T16:46:19Z) - xCoT: Cross-lingual Instruction Tuning for Cross-lingual
Chain-of-Thought Reasoning [36.34986831526529]
Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models.
We propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages.
arXiv Detail & Related papers (2024-01-13T10:53:53Z) - PLUG: Leveraging Pivot Language in Cross-Lingual Instruction Tuning [46.153828074152436]
We propose a pivot language guided generation approach to enhance instruction tuning in lower-resource languages.
It trains the model to first process instructions in the pivot language, and then produce responses in the target language.
Our approach demonstrates a significant improvement in the instruction-following abilities of LLMs by 29% on average.
arXiv Detail & Related papers (2023-11-15T05:28:07Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
We present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages.
Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research.
arXiv Detail & Related papers (2023-07-29T18:01:46Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.