PLUG: Leveraging Pivot Language in Cross-Lingual Instruction Tuning
- URL: http://arxiv.org/abs/2311.08711v2
- Date: Mon, 12 Feb 2024 01:09:34 GMT
- Title: PLUG: Leveraging Pivot Language in Cross-Lingual Instruction Tuning
- Authors: Zhihan Zhang, Dong-Ho Lee, Yuwei Fang, Wenhao Yu, Mengzhao Jia, Meng
Jiang, Francesco Barbieri
- Abstract summary: We propose a pivot language guided generation approach to enhance instruction tuning in lower-resource languages.
It trains the model to first process instructions in the pivot language, and then produce responses in the target language.
Our approach demonstrates a significant improvement in the instruction-following abilities of LLMs by 29% on average.
- Score: 46.153828074152436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instruction tuning has remarkably advanced large language models (LLMs) in
understanding and responding to diverse human instructions. Despite the success
in high-resource languages, its application in lower-resource ones faces
challenges due to the imbalanced foundational abilities of LLMs across
different languages, stemming from the uneven language distribution in their
pre-training data. To tackle this issue, we propose pivot language guided
generation (PLUG), an approach that utilizes a high-resource language,
primarily English, as the pivot to enhance instruction tuning in lower-resource
languages. It trains the model to first process instructions in the pivot
language, and then produce responses in the target language. To evaluate our
approach, we introduce a benchmark, X-AlpacaEval, of instructions in 4
languages (Chinese, Korean, Italian, and Spanish), each annotated by
professional translators. Our approach demonstrates a significant improvement
in the instruction-following abilities of LLMs by 29% on average, compared to
directly responding in the target language alone. Further experiments validate
the versatility of our approach by employing alternative pivot languages beyond
English to assist languages where LLMs exhibit lower proficiency. Our code and
data are available at https://github.com/ytyz1307zzh/PLUG.
Related papers
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Towards a More Inclusive AI: Progress and Perspectives in Large Language Model Training for the Sámi Language [7.289015788793582]
This work focuses on increasing technological participation for the S'ami language.
We draw the attention of the ML community towards the language modeling problem of Ultra Low Resource (ULR) languages.
We have compiled the available S'ami language resources from the web to create a clean dataset for training language models.
arXiv Detail & Related papers (2024-05-09T13:54:22Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
Large language models (LLMs) have been pre-trained on multilingual corpora.
Their performance still lags behind in most languages compared to a few resource-rich languages.
arXiv Detail & Related papers (2024-02-19T15:07:32Z) - TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes [9.254047358707014]
We introduce the Multilingual Instruction-Tuning dataset (MITS), comprised of Alpaca-52K, Dolly-15K, and Vicuna Benchmark translations into 132 languages.
Secondly, we propose a new method called emphTaCo: Translation-Assisted Cross-Linguality, which utilizes translations in a chain-of-thought process to instruction-tune LLMs on new languages through a curriculum-learning process.
Our results indicate that the TaCo method impresses GPT-4 with an 82% score for a low-resource language in the Vicuna Benchmark dataset, doubling the performance in contrast to instruction tuning
arXiv Detail & Related papers (2023-11-17T06:55:32Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
We present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages.
Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research.
arXiv Detail & Related papers (2023-07-29T18:01:46Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - InstructAlign: High-and-Low Resource Language Alignment via Continual
Crosslingual Instruction Tuning [66.31509106146605]
Large language models (LLMs) that are tuned with instructions have demonstrated remarkable capabilities in various tasks and languages.
However, their ability to generalize to underrepresented languages is limited due to the scarcity of available data.
We propose InstructAlign which uses continual crosslingual instruction tuning to enable LLMs to align new unseen languages with previously learned high-resource languages.
arXiv Detail & Related papers (2023-05-23T02:51:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.