One-step differentiation of iterative algorithms
- URL: http://arxiv.org/abs/2305.13768v1
- Date: Tue, 23 May 2023 07:32:37 GMT
- Title: One-step differentiation of iterative algorithms
- Authors: J\'er\^ome Bolte, Edouard Pauwels, Samuel Vaiter
- Abstract summary: We study one-step differentiation, also known as Jacobian-free backpropagation, a method as easy as automatic differentiation.
We provide a complete theoretical approximation analysis with specific examples along with its consequences in bilevel optimization.
- Score: 7.9495796547433395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In appropriate frameworks, automatic differentiation is transparent to the
user at the cost of being a significant computational burden when the number of
operations is large. For iterative algorithms, implicit differentiation
alleviates this issue but requires custom implementation of Jacobian
evaluation. In this paper, we study one-step differentiation, also known as
Jacobian-free backpropagation, a method as easy as automatic differentiation
and as performant as implicit differentiation for fast algorithms (e.g.,
superlinear optimization methods). We provide a complete theoretical
approximation analysis with specific examples (Newton's method, gradient
descent) along with its consequences in bilevel optimization. Several numerical
examples illustrate the well-foundness of the one-step estimator.
Related papers
- Towards Differentiable Multilevel Optimization: A Gradient-Based Approach [1.6114012813668932]
This paper introduces a novel gradient-based approach for multilevel optimization.
Our method significantly reduces computational complexity while improving both solution accuracy and convergence speed.
To the best of our knowledge, this is one of the first algorithms to provide a general version of implicit differentiation.
arXiv Detail & Related papers (2024-10-15T06:17:59Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - The Curse of Unrolling: Rate of Differentiating Through Optimization [35.327233435055305]
Un differentiation approximates the solution using an iterative solver and differentiates it through the computational path.
We show that we can either 1) choose a large learning rate leading to a fast convergence but accept that the algorithm may have an arbitrarily long burn-in phase or 2) choose a smaller learning rate leading to an immediate but slower convergence.
arXiv Detail & Related papers (2022-09-27T09:27:29Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Efficient and Modular Implicit Differentiation [68.74748174316989]
We propose a unified, efficient and modular approach for implicit differentiation of optimization problems.
We show that seemingly simple principles allow to recover many recently proposed implicit differentiation methods and create new ones easily.
arXiv Detail & Related papers (2021-05-31T17:45:58Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Super-efficiency of automatic differentiation for functions defined as a
minimum [16.02151272607889]
In min-min optimization, one has to compute the gradient of a function defined as a minimum.
We study the error made by these estimators as a function of the optimization error.
arXiv Detail & Related papers (2020-02-10T13:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.