Efficient and Modular Implicit Differentiation
- URL: http://arxiv.org/abs/2105.15183v1
- Date: Mon, 31 May 2021 17:45:58 GMT
- Title: Efficient and Modular Implicit Differentiation
- Authors: Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan
Hoyer, Felipe Llinares-L\'opez, Fabian Pedregosa, Jean-Philippe Vert
- Abstract summary: We propose a unified, efficient and modular approach for implicit differentiation of optimization problems.
We show that seemingly simple principles allow to recover many recently proposed implicit differentiation methods and create new ones easily.
- Score: 68.74748174316989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic differentiation (autodiff) has revolutionized machine learning. It
allows expressing complex computations by composing elementary ones in creative
ways and removes the burden of computing their derivatives by hand. More
recently, differentiation of optimization problem solutions has attracted
widespread attention with applications such as optimization as a layer, and in
bi-level problems such as hyper-parameter optimization and meta-learning.
However, the formulas for these derivatives often involve case-by-case tedious
mathematical derivations. In this paper, we propose a unified, efficient and
modular approach for implicit differentiation of optimization problems. In our
approach, the user defines (in Python in the case of our implementation) a
function $F$ capturing the optimality conditions of the problem to be
differentiated. Once this is done, we leverage autodiff of $F$ and implicit
differentiation to automatically differentiate the optimization problem. Our
approach thus combines the benefits of implicit differentiation and autodiff.
It is efficient as it can be added on top of any state-of-the-art solver and
modular as the optimality condition specification is decoupled from the
implicit differentiation mechanism. We show that seemingly simple principles
allow to recover many recently proposed implicit differentiation methods and
create new ones easily. We demonstrate the ease of formulating and solving
bi-level optimization problems using our framework. We also showcase an
application to the sensitivity analysis of molecular dynamics.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - One-step differentiation of iterative algorithms [7.9495796547433395]
We study one-step differentiation, also known as Jacobian-free backpropagation, a method as easy as automatic differentiation.
We provide a complete theoretical approximation analysis with specific examples along with its consequences in bilevel optimization.
arXiv Detail & Related papers (2023-05-23T07:32:37Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Differentiable Spline Approximations [48.10988598845873]
Differentiable programming has significantly enhanced the scope of machine learning.
Standard differentiable programming methods (such as autodiff) typically require that the machine learning models be differentiable.
We show that leveraging this redesigned Jacobian in the form of a differentiable "layer" in predictive models leads to improved performance in diverse applications.
arXiv Detail & Related papers (2021-10-04T16:04:46Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - Nonsmooth Implicit Differentiation for Machine Learning and Optimization [0.0]
In view of training increasingly complex learning architectures, we establish a nonsmooth implicit function theorem with an operational calculus.
Our result applies to most practical problems (i.e., definable problems) provided that a nonsmooth form of the classical invertibility condition is fulfilled.
This approach allows for formal subdifferentiation: for instance, replacing derivatives by Clarke Jacobians in the usual differentiation formulas is fully justified.
arXiv Detail & Related papers (2021-06-08T13:59:47Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
We present a generic strategy to efficiently approximate any-order directional derivative with finite difference.
Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations.
arXiv Detail & Related papers (2020-07-07T10:05:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.