UPNet: Uncertainty-based Picking Deep Learning Network for Robust First Break Picking
- URL: http://arxiv.org/abs/2305.13799v2
- Date: Sun, 7 Apr 2024 12:33:08 GMT
- Title: UPNet: Uncertainty-based Picking Deep Learning Network for Robust First Break Picking
- Authors: Hongtao Wang, Jiangshe Zhang, Xiaoli Wei, Li Long, Chunxia Zhang,
- Abstract summary: First break (FB) picking is a crucial aspect in the determination of subsurface velocity models.
Deep neural networks (DNNs) have been proposed to accelerate this processing.
We introduce uncertainty quantification into the FB picking task and propose a novel uncertainty-based deep learning network called UPNet.
- Score: 6.380128763476294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In seismic exploration, first break (FB) picking is a crucial aspect in the determination of subsurface velocity models, significantly influencing the placement of wells. Many deep neural networks (DNNs)-based automatic picking methods have been proposed to accelerate this processing. Significantly, the segmentation-based DNN methods provide a segmentation map and then estimate FB from the map using a picking threshold. However, the uncertainty of the results picked by DNNs still needs to be analyzed. Thus, the automatic picking methods applied in field datasets can not ensure robustness, especially in the case of a low signal-to-noise ratio (SNR). In this paper, we introduce uncertainty quantification into the FB picking task and propose a novel uncertainty-based picking deep learning network called UPNet. UPNet not only estimates the uncertainty of network output but also can filter the pickings with low confidence. Many experiments evaluate that UPNet exhibits higher accuracy and robustness than the deterministic DNN-based model, achieving State-of-the-Art (SOTA) performance in field surveys. In addition, we verify that the measurement uncertainty is meaningful, which can provide a reference for human decision-making.
Related papers
- Random-Set Neural Networks (RS-NN) [4.549947259731147]
We propose a novel Random-Set Neural Network (RS-NN) for classification.
RS-NN predicts belief functions rather than probability vectors over a set of classes.
It encodes the 'epistemic' uncertainty induced in machine learning by limited training sets.
arXiv Detail & Related papers (2023-07-11T20:00:35Z) - Knowing When to Stop: Delay-Adaptive Spiking Neural Network Classifiers with Reliability Guarantees [36.14499894307206]
Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics.
We introduce a novel delay-adaptive SNN-based inference methodology that provides guaranteed reliability for the decisions produced at input-dependent stopping times.
arXiv Detail & Related papers (2023-05-18T22:11:04Z) - A Benchmark on Uncertainty Quantification for Deep Learning Prognostics [0.0]
We assess some of the latest developments in the field of uncertainty quantification for prognostics deep learning.
This includes the state-of-the-art variational inference algorithms for Bayesian neural networks (BNN) as well as popular alternatives such as Monte Carlo Dropout (MCD), deep ensembles (DE) and heteroscedastic neural networks (HNN)
The performance of the methods is evaluated on a subset of the large NASA NCMAPSS dataset for aircraft engines.
arXiv Detail & Related papers (2023-02-09T16:12:47Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Probabilistic Neighbourhood Component Analysis: Sample Efficient
Uncertainty Estimation in Deep Learning [25.8227937350516]
We show that uncertainty estimation capability of state-of-the-art BNNs and Deep Ensemble models degrades significantly when the amount of training data is small.
We propose a probabilistic generalization of the popular sample-efficient non-parametric kNN approach.
Our approach enables deep kNN to accurately quantify underlying uncertainties in its prediction.
arXiv Detail & Related papers (2020-07-18T21:36:31Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data.
Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods.
We develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals.
arXiv Detail & Related papers (2020-06-20T22:45:32Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.