論文の概要: QFA2SR: Query-Free Adversarial Transfer Attacks to Speaker Recognition
Systems
- arxiv url: http://arxiv.org/abs/2305.14097v2
- Date: Sat, 23 Sep 2023 15:19:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 02:42:40.392348
- Title: QFA2SR: Query-Free Adversarial Transfer Attacks to Speaker Recognition
Systems
- Title(参考訳): QFA2SR: 話者認識システムに対するクエリフリー逆変換攻撃
- Authors: Guangke Chen, Yedi Zhang, Zhe Zhao, Fu Song
- Abstract要約: 話者認識システム(SRS)に対する現在の敵攻撃は、ターゲットのSRSに対して、ホワイトボックスアクセスまたは重いブラックボックスクエリを必要とする。
対向音声の転送可能性を活用することにより,QFA2SRを提案する。
QFA2SRは、それぞれ60%、46%、ターゲット転送性70%の広帯域音声アシスタントに対して、空中起動時に非常に効果的である。
- 参考スコア(独自算出の注目度): 7.924452626448202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current adversarial attacks against speaker recognition systems (SRSs)
require either white-box access or heavy black-box queries to the target SRS,
thus still falling behind practical attacks against proprietary commercial APIs
and voice-controlled devices. To fill this gap, we propose QFA2SR, an effective
and imperceptible query-free black-box attack, by leveraging the
transferability of adversarial voices. To improve transferability, we present
three novel methods, tailored loss functions, SRS ensemble, and time-freq
corrosion. The first one tailors loss functions to different attack scenarios.
The latter two augment surrogate SRSs in two different ways. SRS ensemble
combines diverse surrogate SRSs with new strategies, amenable to the unique
scoring characteristics of SRSs. Time-freq corrosion augments surrogate SRSs by
incorporating well-designed time-/frequency-domain modification functions,
which simulate and approximate the decision boundary of the target SRS and
distortions introduced during over-the-air attacks. QFA2SR boosts the targeted
transferability by 20.9%-70.7% on four popular commercial APIs (Microsoft
Azure, iFlytek, Jingdong, and TalentedSoft), significantly outperforming
existing attacks in query-free setting, with negligible effect on the
imperceptibility. QFA2SR is also highly effective when launched over the air
against three wide-spread voice assistants (Google Assistant, Apple Siri, and
TMall Genie) with 60%, 46%, and 70% targeted transferability, respectively.
- Abstract(参考訳): 話者認識システム(SRS)に対する現在の敵対攻撃は、ターゲットSRSへのホワイトボックスアクセスまたは重いブラックボックスクエリを必要とするため、プロプライエタリな商用APIや音声制御デバイスに対する実用的な攻撃には依然として遅れている。
このギャップを埋めるために、敵声の転送可能性を活用することにより、QFA2SRを提案する。
トランスファビリティを向上させるために, 3つの新しい手法, 調整された損失関数, SRSアンサンブル, タイムフレク腐食を提案する。
最初の1つのテーラーは異なる攻撃シナリオで機能を失う。
後者の2つはsrsを2つの異なる方法で拡張する。
SRSアンサンブルは、多様なサロゲートSRSと新しい戦略を組み合わせることで、SRSのユニークなスコアリング特性に対応する。
時間フレック腐食は、標的srsの決定境界をシミュレートし近似するよく設計された時間領域/周波数領域修正関数を組み込むことで、サロゲートsrsを増強する。
QFA2SRは、人気のある4つの商用API(Microsoft Azure、iFlytek、Jingdong、TalentedSoft)において、ターゲット転送可能性を20.9%から70.7%向上させ、クエリフリー環境での既存の攻撃を著しく上回った。
QFA2SRは、Google Assistant、Apple Siri、TMall Genieの3つの広帯域音声アシスタントに対して、それぞれ60%、46%、ターゲット転送性70%に対して、空中起動時に非常に効果的である。
関連論文リスト
- Toward Improving Synthetic Audio Spoofing Detection Robustness via Meta-Learning and Disentangled Training With Adversarial Examples [33.445126880876415]
自動話者検証システムに到達させる代わりに、スプーフ攻撃をフィルタリングする信頼性と堅牢なスプーフ検出システムを提案する。
データ不均衡問題に対処するために重み付き加法的角縁損失が提案され、スプーフィング攻撃に対する一般化を改善するために異なるマージンが割り当てられている。
データ拡張戦略として、スプーフィング音声に知覚不能な摂動を加えて、敵の例にのみ対応する正規化統計が実行されることを保証するために、補助的なバッチ正規化を用いる。
論文 参考訳(メタデータ) (2024-08-23T19:26:54Z) - ALIF: Low-Cost Adversarial Audio Attacks on Black-Box Speech Platforms using Linguistic Features [25.28307679567351]
ALIFは、最初のブラックボックス対応言語機能ベースのアタックパイプラインである。
本稿では,デジタルドメインと物理再生環境の両方で攻撃を開始するためのALIF-OTLおよびALIF-OTAスキームを提案する。
論文 参考訳(メタデータ) (2024-08-03T15:30:16Z) - Homogeneous Speaker Features for On-the-Fly Dysarthric and Elderly Speaker Adaptation [71.31331402404662]
本稿では, 変形性関節症と高齢者の話者レベルの特徴を学習するための2つの新しいデータ効率手法を提案する。
話者規則化スペクトルベース埋め込み-SBE特徴は、特別な正規化項を利用して適応における話者特徴の均一性を強制する。
テスト時間適応において、話者レベルのデータ量に敏感であることが示されるVR-LH機能に規定されている特徴ベースの学習隠れユニットコントリビューション(f-LHUC)。
論文 参考訳(メタデータ) (2024-07-08T18:20:24Z) - Zero-Query Adversarial Attack on Black-box Automatic Speech Recognition Systems [27.281231584238824]
ブラックボックスの敵攻撃は現実世界のASRシステムに重大な脅威をもたらす。
我々は、ASRシステムに対する転送ベースの敵攻撃であるZQ-Attackを提案する。
オーバーザライン設定では、ZQ-Attackは21.91dBの平均信号対雑音比(SNR)で100%の成功率(SRoA)を達成する。
論文 参考訳(メタデータ) (2024-06-27T16:39:36Z) - Query Provenance Analysis: Efficient and Robust Defense against Query-based Black-box Attacks [11.32992178606254]
我々は、より堅牢で効率的なステートフルディフェンスモデル(SDM)のための新しいアプローチ、QPA(Query Provenance Analysis)を提案する。
QPAは、クエリ間の履歴関係をシーケンスの特徴としてカプセル化し、良性クエリシーケンスと逆性クエリシーケンスの基本的な違いをキャプチャする。
我々は,6つのクエリベースのブラックボックスアタックアルゴリズムを用いて,広く使用されている4つのデータセットに対して,2つのベースラインであるBlackLightとPIHAと比較した。
論文 参考訳(メタデータ) (2024-05-31T06:56:54Z) - Improved Generation of Adversarial Examples Against Safety-aligned LLMs [72.38072942860309]
勾配に基づく手法を用いて生成した敵対的プロンプトは、安全対応のLDMに対して自動ジェイルブレイク攻撃を行う際、優れた性能を示す。
本稿では,この問題に対する新たな視点を探求し,トランスファーベースの攻撃にインスパイアされたイノベーションを活用することで緩和できることを示唆する。
この組み合わせによって生成されたクエリ固有逆接接尾辞の87%がLlama-2-7B-Chatを誘導し、AdvBench上のターゲット文字列と正確に一致する出力を生成することを示した。
論文 参考訳(メタデータ) (2024-05-28T06:10:12Z) - MLCA-AVSR: Multi-Layer Cross Attention Fusion based Audio-Visual Speech Recognition [62.89464258519723]
異なるレベルのオーディオ/視覚エンコーダに融合することで、各モードの表現を促進する多層クロスアテンション融合に基づくAVSR手法を提案する。
提案手法は第1位システムを超え,新たなSOTA cpCERの29.13%をこのデータセット上に構築する。
論文 参考訳(メタデータ) (2024-01-07T08:59:32Z) - AS2T: Arbitrary Source-To-Target Adversarial Attack on Speaker
Recognition Systems [15.013763364096638]
近年の研究では、敵対的攻撃に対する話者認識システム(SRS)の脆弱性が照らされている。
すべての設定をカバーするこのドメインの最初の攻撃であるAS2Tを紹介します。
本研究は, 無線通信において発生した可能性のある歪みについて検討し, 異なるパラメータの異なる変換関数を用いて, その歪みをモデル化し, 逆声の発生に組み込む。
論文 参考訳(メタデータ) (2022-06-07T14:38:55Z) - FoolHD: Fooling speaker identification by Highly imperceptible
adversarial Disturbances [63.80959552818541]
話者識別モデルに対する知覚不能な摂動を発生させるホワイトボックス・ステガノグラフィーによる敵攻撃を提案する。
我々のアプローチであるFoolHDは、DCTドメインで動作するGated Convolutional Autoencoderを使用し、多目的損失関数で訓練されている。
我々は,VoxCelebを用いて訓練した250話者識別xベクトルネットワークを用いてFoolHDを検証する。
論文 参考訳(メタデータ) (2020-11-17T07:38:26Z) - Sparse-RS: a versatile framework for query-efficient sparse black-box
adversarial attacks [64.03012884804458]
ブラックボックス設定におけるスパース攻撃および未標的攻撃に対するランダム探索に基づく多目的フレームワークであるSparse-RSを提案する。
Sparse-RSは代替モデルに依存しておらず、複数のスパース攻撃モデルに対して最先端の成功率とクエリ効率を達成する。
論文 参考訳(メタデータ) (2020-06-23T08:50:37Z) - Characterizing Speech Adversarial Examples Using Self-Attention U-Net
Enhancement [102.48582597586233]
本稿では,U-Net$_At$という,U-Netに基づくアテンションモデルを提案する。
対戦型音声アタックを用いた自動音声認識(ASR)タスクの実験を行った。
論文 参考訳(メタデータ) (2020-03-31T02:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。