論文の概要: Question Answering as Programming for Solving Time-Sensitive Questions
- arxiv url: http://arxiv.org/abs/2305.14221v1
- Date: Tue, 23 May 2023 16:35:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 14:44:28.241344
- Title: Question Answering as Programming for Solving Time-Sensitive Questions
- Title(参考訳): 時間に敏感な質問を解くためのプログラミングとしての質問答え
- Authors: Xinyu Zhu, Cheng Yang, Bei Chen, Siheng Li, Jian-Guang Lou, Yujiu Yang
- Abstract要約: 質問回答タスクをプログラミング(QAaP)として再編成するために、LLM(Large Language Models)を適用しようとしています。
現代のLLMは自然言語の理解とプログラミングの両方において優れた能力を持っている。
- 参考スコア(独自算出の注目度): 39.067550875547106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we try to apply Large Language Models (LLMs) to reframe the
Question Answering task as Programming (QAaP). Due to the inherent dynamic
nature of the real world, factual questions frequently involve a symbolic
constraint: time, solving these questions necessitates not only extensive world
knowledge, but also advanced reasoning ability to satisfy the temporal
constraints. Despite the remarkable intelligence exhibited by LLMs in various
NLP tasks, our experiments reveal that the aforementioned problems continue to
pose a significant challenge to existing LLMs. To solve these time-sensitive
factual questions, considering that modern LLMs possess superior ability in
both natural language understanding and programming,we endeavor to leverage
LLMs to represent diversely expressed text as well-structured code, and thereby
grasp the desired knowledge along with the underlying symbolic constraint.
- Abstract(参考訳): この作業では、質問回答タスクをプログラミング(QAaP)として再編成するために、LLM(Large Language Models)を適用しようとしています。
現実の世界の本質的な動的な性質のため、現実的な質問はしばしば象徴的な制約を伴う:時間、これらの質問を解決するには、広い世界の知識だけでなく、時間的制約を満たす高度な推論能力も必要である。
LLMが様々なNLPタスクで顕著なインテリジェンスを示したにも拘わらず、上記の問題が既存のLLMに重大な課題をもたらし続けていることが明らかとなった。
これらの時間に敏感な事実問題を解決するために、現代のLLMは自然言語の理解とプログラミングの両方において優れた能力を持っていることを考慮し、多様に表現されたテキストとよく構造化されたコードを表現するためにLLMを活用し、基礎となる記号的制約とともに所望の知識を把握する。
関連論文リスト
- FSM: A Finite State Machine Based Zero-Shot Prompting Paradigm for Multi-Hop Question Answering [26.398873686905063]
大きな言語モデル (LLM) とチェーン・オブ・シント (COT) のプロンプトは、単純な自然言語推論タスクにおいて印象的な能力を示している。
本稿では,複雑なタスクに対するLLMの推論能力を高めるために,FSM(Finite State Machine)というプロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T10:01:01Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - UnibucLLM: Harnessing LLMs for Automated Prediction of Item Difficulty and Response Time for Multiple-Choice Questions [25.877058354902953]
本研究は,BEA 2024共有タスクにおけるUSMLE多項目質問(MCQ)の項目難易度と応答時間を予測するために,LLM(Large Language Models)に基づく新しいデータ拡張手法を提案する。
我々のアプローチは、ゼロショットLLMからの回答をデータセットに拡張し、6つの代替機能の組み合わせに基づいてトランスフォーマーベースのモデルを採用することに基づいている。
論文 参考訳(メタデータ) (2024-04-20T10:41:02Z) - Efficient Contextual LLM Cascades through Budget-Constrained Policy Learning [31.972053219549757]
TREACLEは、ユーザの金銭的コストとレイテンシの制約を尊重しながら、モデルとプロンプトスキームを共同で選択する強化学習ポリシーである。
評価の結果,TREACLEはベースラインに比べて最大85%のコスト削減が可能であり,精度は高いことがわかった。
論文 参考訳(メタデータ) (2024-04-17T05:56:49Z) - Turbulence: Systematically and Automatically Testing Instruction-Tuned
Large Language Models for Code [12.58098809948832]
本稿では,新しいベンチマークである乱流を用いて,命令調整型大規模言語モデル(LLM)のコード生成における正確性と堅牢性を評価する手法を提案する。
乱流は、多数の自然言語の$textitquestion templates$から成り、それぞれがプログラミングの問題であり、様々な形式で問うことができるようにパラメータ化されている。
単一の質問テンプレートから、LLM に $textitneighbourhood$ と非常によく似たプログラミング質問を問うことができ、各質問に対して返された結果の正しさを評価することができる。
論文 参考訳(メタデータ) (2023-12-22T17:29:08Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
本稿では,VQAタスクに対する推論質問プロンプトを提案する。
自己完結した質問は、教師なし質問セットモジュールを介して推論された質問プロンプトとして生成する。
各推論質問は、元の質問の意図を明確に示す。
そして、回答整合性として働く信頼度スコアに関連する候補回答をLSMに入力する。
論文 参考訳(メタデータ) (2023-11-15T15:40:46Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - FreshLLMs: Refreshing Large Language Models with Search Engine
Augmentation [92.43001160060376]
本研究では,現在の世界知識をテストする質問に答える文脈において,大規模言語モデル(LLM)の事実性について検討する。
多様な質問や回答のタイプを含む新しい動的QAベンチマークであるFreshQAを紹介する。
我々は,2モード評価法により,閉じたLLMとオープンソースのLLMの多種多様な配列をベンチマークし,その正しさと幻覚の両面を計測する。
これらの結果に触発されたFreshPromptは、FreshQA上でのLLMの性能を大幅に向上させる単純な数ショットプロンプトである。
論文 参考訳(メタデータ) (2023-10-05T00:04:12Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
本研究では,ALIESと呼ばれる新しい手法を提案する。
入力クエリが与えられた場合、ALLIESはLLMを活用して、元のクエリに関連する新しいクエリを反復的に生成する。
元のクエリのスコープを反復的に精錬して拡張することにより、ALLIESは直接検索できない隠れた知識をキャプチャし、利用する。
論文 参考訳(メタデータ) (2023-05-24T06:16:44Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。