論文の概要: Linear Cross-Lingual Mapping of Sentence Embeddings
- arxiv url: http://arxiv.org/abs/2305.14256v2
- Date: Thu, 27 Jun 2024 03:43:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 20:35:54.689215
- Title: Linear Cross-Lingual Mapping of Sentence Embeddings
- Title(参考訳): 文埋め込みの線形言語間相互マッピング
- Authors: Oleg Vasilyev, Fumika Isono, John Bohannon,
- Abstract要約: 文の意味論は、1つの単語の意味論よりもはるかに曖昧さで定義される。
単純線形言語間マッピングを多言語埋め込みの改善の可能性として検討する。
- 参考スコア(独自算出の注目度): 19.444501191526772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantics of a sentence is defined with much less ambiguity than semantics of a single word, and we assume that it should be better preserved by translation to another language. If multilingual sentence embeddings intend to represent sentence semantics, then the similarity between embeddings of any two sentences must be invariant with respect to translation. Based on this suggestion, we consider a simple linear cross-lingual mapping as a possible improvement of the multilingual embeddings. We also consider deviation from orthogonality conditions as a measure of deficiency of the embeddings.
- Abstract(参考訳): 文の意味論は、一つの単語の意味論よりもはるかに曖昧さで定義され、他の言語への翻訳によって保存されるべきであると仮定する。
多言語文の埋め込みが文の意味を表現しようとする場合、任意の2つの文の埋め込みの類似性は翻訳に関して不変である。
この提案に基づき、単純線形言語間マッピングを多言語埋め込みの改善の可能性として検討する。
また、直交条件からの逸脱を埋め込みの欠如の尺度として考える。
関連論文リスト
- Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - Bridging Continuous and Discrete Spaces: Interpretable Sentence
Representation Learning via Compositional Operations [80.45474362071236]
文の合成意味論が埋め込み空間における構成操作として直接反映できるかどうかは不明である。
文埋め込み学習のためのエンドツーエンドフレームワークであるInterSentを提案する。
論文 参考訳(メタデータ) (2023-05-24T00:44:49Z) - Retrofitting Multilingual Sentence Embeddings with Abstract Meaning
Representation [70.58243648754507]
抽象的意味表現(AMR)を用いた既存の多言語文の埋め込みを改善する新しい手法を提案する。
原文入力と比較すると、AMRは文の中核概念と関係を明確かつ曖昧に表す構造的意味表現である。
実験結果から,多言語文をAMRで埋め込むと,意味的類似性と伝達タスクの両方において,最先端の性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-10-18T11:37:36Z) - Measuring Fine-Grained Semantic Equivalence with Abstract Meaning
Representation [9.666975331506812]
意味論的に等価な文を特定することは、多くのNLPタスクにとって重要である。
意味的同値性への最近のアプローチは「等価性」への緩やかな文レベルのアプローチを取る
抽象的意味表現グラフ構造を利用した意味等価性を特徴付ける新しい,より敏感な手法を提案する。
論文 参考訳(メタデータ) (2022-10-06T16:08:27Z) - Speakers Fill Lexical Semantic Gaps with Context [65.08205006886591]
我々は単語の語彙的あいまいさを意味のエントロピーとして運用する。
単語のあいまいさの推定値と,WordNetにおける単語の同義語数との間には,有意な相関関係が認められた。
これは、あいまいさの存在下では、話者が文脈をより情報的にすることで補うことを示唆している。
論文 参考訳(メタデータ) (2020-10-05T17:19:10Z) - Learning aligned embeddings for semi-supervised word translation using
Maximum Mean Discrepancy [3.299672391663527]
本稿では,単語ペアを必要としない単語埋め込みアライメントのためのエンドツーエンドアプローチを提案する。
本手法は, 文章翻訳訓練において, 局所的な最大平均離散性(MMD)制約を用いて整列した埋め込みを学習する。
提案手法は,教師なしの手法だけでなく,既知の単語翻訳を訓練する教師付き手法にも優れることを示す。
論文 参考訳(メタデータ) (2020-06-20T13:57:55Z) - On the Language Neutrality of Pre-trained Multilingual Representations [70.93503607755055]
語彙意味論に関して,多言語文脈埋め込みの言語中立性を直接的に検討する。
その結果、文脈埋め込みは言語ニュートラルであり、概して静的な単語型埋め込みよりも情報的であることがわかった。
本稿では,言語識別における最先端の精度に到達し,並列文の単語アライメントのための統計的手法の性能を一致させる方法について述べる。
論文 参考訳(メタデータ) (2020-04-09T19:50:32Z) - Refinement of Unsupervised Cross-Lingual Word Embeddings [2.4366811507669124]
言語間の単語埋め込みは、高リソース言語と低リソース言語のギャップを埋めることを目的としています。
教師なしバイリンガル単語埋め込みのアライメントを改良する自己教師付き手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T10:39:53Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
本稿では,文整合コーパスを利用して頑健な言語間単語表現を実現するCBOW手法のバイリンガル拡張を提案する。
提案手法は,他のすべての手法と比較して,言語間文検索性能を著しく向上させる。
また、ゼロショットのクロスランガル文書分類タスクにおいて、ディープRNN法と同等性を実現する。
論文 参考訳(メタデータ) (2019-12-28T16:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。