Weakly-Supervised Learning of Visual Relations in Multimodal Pretraining
- URL: http://arxiv.org/abs/2305.14281v2
- Date: Thu, 19 Oct 2023 17:46:34 GMT
- Title: Weakly-Supervised Learning of Visual Relations in Multimodal Pretraining
- Authors: Emanuele Bugliarello, Aida Nematzadeh, Lisa Anne Hendricks
- Abstract summary: We propose two pretraining approaches to contextualise visual entities in a multimodal setup.
With verbalised scene graphs, we transform visual relation triplets into structured captions, and treat them as additional image descriptions.
With masked relation prediction, we further encourage relating entities from image regions with visually masked contexts.
- Score: 25.11384964373604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work in vision-and-language pretraining has investigated supervised
signals from object detection data to learn better, fine-grained multimodal
representations. In this work, we take a step further and explore how we can
tap into supervision from small-scale visual relation data. In particular, we
propose two pretraining approaches to contextualise visual entities in a
multimodal setup. With verbalised scene graphs, we transform visual relation
triplets into structured captions, and treat them as additional image
descriptions. With masked relation prediction, we further encourage relating
entities from image regions with visually masked contexts. When applied to
strong baselines pretrained on large amounts of Web data, zero-shot evaluations
on both coarse-grained and fine-grained tasks show the efficacy of our methods
in learning multimodal representations from weakly-supervised relations data.
Related papers
- Visual Analytics for Efficient Image Exploration and User-Guided Image
Captioning [35.47078178526536]
Recent advancements in pre-trained large-scale language-image models have ushered in a new era of visual comprehension.
This paper tackles two well-known issues within the realm of visual analytics: (1) the efficient exploration of large-scale image datasets and identification of potential data biases within them; (2) the evaluation of image captions and steering of their generation process.
arXiv Detail & Related papers (2023-11-02T06:21:35Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
We propose a visual-linguistic representation learning approach within a self-supervised learning framework.
We generate diverse features for the image-text matching (ITM) task via soft-masking the regions in an image.
We identify the relevant regions to each word by computing the word-conditional visual attention using multi-modal encoder.
arXiv Detail & Related papers (2023-04-03T05:07:49Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Multimodal Contrastive Training for Visual Representation Learning [45.94662252627284]
We develop an approach to learning visual representations that embraces multimodal data.
Our method exploits intrinsic data properties within each modality and semantic information from cross-modal correlation simultaneously.
By including multimodal training in a unified framework, our method can learn more powerful and generic visual features.
arXiv Detail & Related papers (2021-04-26T19:23:36Z) - MAF: Multimodal Alignment Framework for Weakly-Supervised Phrase
Grounding [74.33171794972688]
We present algorithms to model phrase-object relevance by leveraging fine-grained visual representations and visually-aware language representations.
Experiments conducted on the widely-adopted Flickr30k dataset show a significant improvement over existing weakly-supervised methods.
arXiv Detail & Related papers (2020-10-12T00:43:52Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
Recent Transformer-based large-scale pre-trained models have revolutionized vision-and-language (V+L) research.
We present VALUE, a set of meticulously designed probing tasks to decipher the inner workings of multimodal pre-training.
Key observations: Pre-trained models exhibit a propensity for attending over text rather than images during inference.
arXiv Detail & Related papers (2020-05-15T01:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.