Dense Contrastive Visual-Linguistic Pretraining
- URL: http://arxiv.org/abs/2109.11778v1
- Date: Fri, 24 Sep 2021 07:20:13 GMT
- Title: Dense Contrastive Visual-Linguistic Pretraining
- Authors: Lei Shi, Kai Shuang, Shijie Geng, Peng Gao, Zuohui Fu, Gerard de Melo,
Yunpeng Chen, Sen Su
- Abstract summary: Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
- Score: 53.61233531733243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by the success of BERT, several multimodal representation learning
approaches have been proposed that jointly represent image and text. These
approaches achieve superior performance by capturing high-level semantic
information from large-scale multimodal pretraining. In particular, LXMERT and
UNITER adopt visual region feature regression and label classification as
pretext tasks. However, they tend to suffer from the problems of noisy labels
and sparse semantic annotations, based on the visual features having been
pretrained on a crowdsourced dataset with limited and inconsistent semantic
labeling. To overcome these issues, we propose unbiased Dense Contrastive
Visual-Linguistic Pretraining (DCVLP), which replaces the region regression and
classification with cross-modality region contrastive learning that requires no
annotations. Two data augmentation strategies (Mask Perturbation and
Intra-/Inter-Adversarial Perturbation) are developed to improve the quality of
negative samples used in contrastive learning. Overall, DCVLP allows
cross-modality dense region contrastive learning in a self-supervised setting
independent of any object annotations. We compare our method against prior
visual-linguistic pretraining frameworks to validate the superiority of dense
contrastive learning on multimodal representation learning.
Related papers
- Multi-Grained Contrast for Data-Efficient Unsupervised Representation Learning [10.630297877530614]
We propose a novel Multi-Grained Contrast method (MGC) for unsupervised representation learning.
Specifically, we construct delicate multi-grained correspondences between positive views and then conduct multi-grained contrast by the correspondences to learn more general unsupervised representations.
Our method significantly outperforms the existing state-of-the-art methods on extensive downstream tasks, including object detection, instance segmentation, scene parsing, semantic segmentation and keypoint detection.
arXiv Detail & Related papers (2024-07-02T07:35:21Z) - Semantic Contrastive Bootstrapping for Single-positive Multi-label
Recognition [36.3636416735057]
We present a semantic contrastive bootstrapping (Scob) approach to gradually recover the cross-object relationships.
We then propose a recurrent semantic masked transformer to extract iconic object-level representations.
Extensive experimental results demonstrate that the proposed joint learning framework surpasses the state-of-the-art models.
arXiv Detail & Related papers (2023-07-15T01:59:53Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z) - Generative Negative Text Replay for Continual Vision-Language
Pretraining [95.2784858069843]
Vision-language pre-training has attracted increasing attention recently.
Massive data are usually collected in a streaming fashion.
We propose a multi-modal knowledge distillation between images and texts to align the instance-wise prediction between old and new models.
arXiv Detail & Related papers (2022-10-31T13:42:21Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
We present a transformer-based end-to-end ZSL method named DUET.
We develop a cross-modal semantic grounding network to investigate the model's capability of disentangling semantic attributes from the images.
We find that DUET can often achieve state-of-the-art performance, its components are effective and its predictions are interpretable.
arXiv Detail & Related papers (2022-07-04T11:12:12Z) - A Simple Long-Tailed Recognition Baseline via Vision-Language Model [92.2866546058082]
The visual world naturally exhibits a long-tailed distribution of open classes, which poses great challenges to modern visual systems.
Recent advances in contrastive visual-language pretraining shed light on a new pathway for visual recognition.
We propose BALLAD to leverage contrastive vision-language models for long-tailed recognition.
arXiv Detail & Related papers (2021-11-29T17:49:24Z) - ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and
Intra-modal Knowledge Integration [48.01536973731182]
We introduce a new vision-and-language pretraining method called ROSITA.
It integrates the cross- and intra-modal knowledge in a unified scene graph to enhance the semantic alignments.
ROSITA significantly outperforms existing state-of-the-art methods on three typical vision-and-language tasks over six benchmark datasets.
arXiv Detail & Related papers (2021-08-16T13:16:58Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
Weakly supervised learning has emerged as an appealing alternative to alleviate the need for large labeled datasets in semantic segmentation.
We present a novel learning strategy that leverages self-supervision in a multi-modal image scenario to significantly enhance original CAMs.
Our approach outperforms relevant recent literature under the same learning conditions.
arXiv Detail & Related papers (2021-04-06T13:14:20Z) - Contrastive Visual-Linguistic Pretraining [48.88553854384866]
Contrastive Visual-Linguistic Pretraining constructs a visual self-supervised loss built upon contrastive learning.
We evaluate it on several down-stream tasks, including VQA, GQA and NLVR2.
arXiv Detail & Related papers (2020-07-26T14:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.