RET-LLM: Towards a General Read-Write Memory for Large Language Models
- URL: http://arxiv.org/abs/2305.14322v2
- Date: Thu, 24 Oct 2024 17:59:20 GMT
- Title: RET-LLM: Towards a General Read-Write Memory for Large Language Models
- Authors: Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, Hinrich Schütze,
- Abstract summary: RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
- Score: 53.288356721954514
- License:
- Abstract: Large language models (LLMs) have significantly advanced the field of natural language processing (NLP) through their extensive parameters and comprehensive data utilization. However, existing LLMs lack a dedicated memory unit, limiting their ability to explicitly store and retrieve knowledge for various tasks. In this paper, we propose RET-LLM a novel framework that equips LLMs with a general write-read memory unit, allowing them to extract, store, and recall knowledge from the text as needed for task performance. Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets. The memory unit is designed to be scalable, aggregatable, updatable, and interpretable. Through qualitative evaluations, we demonstrate the superiority of our proposed framework over baseline approaches in question answering tasks. Moreover, our framework exhibits robust performance in handling temporal-based question answering tasks, showcasing its ability to effectively manage time-dependent information.
Related papers
- Assessing Episodic Memory in LLMs with Sequence Order Recall Tasks [42.22616978679253]
We introduce Sequence Order Recall Tasks (SORT), which we adapt from tasks used to study episodic memory in cognitive psychology.
SORT requires LLMs to recall the correct order of text segments, and provides a general framework that is both easily extendable and does not require any additional annotations.
Based on a human experiment with 155 participants, we show that humans can recall sequence order based on long-term memory of a book.
arXiv Detail & Related papers (2024-10-10T17:17:38Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases.
Existing RAG systems are primarily effective for straightforward question-answering tasks.
We propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory.
arXiv Detail & Related papers (2024-09-09T13:20:31Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
Large language models (LLMs) have sparked debate over whether they genuinely generalize to unseen tasks or rely on memorizing vast amounts of pretraining data.
We introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency.
This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks.
arXiv Detail & Related papers (2024-07-20T21:24:40Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Needle in the Haystack for Memory Based Large Language Models [31.885539843977472]
Current large language models (LLMs) often perform poorly on simple fact retrieval tasks.
We investigate if coupling a dynamically adaptable external memory to a LLM can alleviate this problem.
We demonstrate that the external memory of Larimar, which allows fast write and read of an episode of text samples, can be used at test time to handle contexts much longer than those seen during training.
arXiv Detail & Related papers (2024-07-01T16:32:16Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
We introduce MemLLM, a novel method of enhancing knowledge capabilities by integrating a structured and explicit read-and-write memory module.
Our experiments indicate that MemLLM enhances performance and interpretability, in language modeling general and in particular.
We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
arXiv Detail & Related papers (2024-04-17T18:13:16Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.
We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.