MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
- URL: http://arxiv.org/abs/2404.11672v1
- Date: Wed, 17 Apr 2024 18:13:16 GMT
- Title: MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
- Authors: Ali Modarressi, Abdullatif Köksal, Ayyoob Imani, Mohsen Fayyaz, Hinrich Schütze,
- Abstract summary: We introduce MemLLM, a novel method of enhancing knowledge capabilities by integrating a structured and explicit read-and-write memory module.
Our experiments indicate that MemLLM enhances performance and interpretability, in language modeling general and in particular.
We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
- Score: 49.96019697955383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While current large language models (LLMs) demonstrate some capabilities in knowledge-intensive tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with infrequent knowledge and temporal degradation. In addition, the uninterpretable nature of parametric memorization makes it challenging to understand and prevent hallucination. Parametric memory pools and model editing are only partial solutions. Retrieval Augmented Generation (RAG) $\unicode{x2013}$ though non-parametric $\unicode{x2013}$ has its own limitations: it lacks structure, complicates interpretability and makes it hard to effectively manage stored knowledge. In this paper, we introduce MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-and-write memory module. MemLLM tackles the aforementioned challenges by enabling dynamic interaction with the memory and improving the LLM's capabilities in using stored knowledge. Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular. We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
Related papers
- $\text{Memory}^3$: Language Modeling with Explicit Memory [22.572376536612015]
We equip large language models (LLMs) with explicit memory, a memory format cheaper than model parameters and text retrieval-augmented generation (RAG)
As a preliminary proof of concept, we train from scratch a 2.4B LLM, which achieves better performance than much larger LLMs and RAG models.
We introduce a memory circuitry theory to support the externalization of knowledge, and present novel techniques including a memory sparsification mechanism that makes storage tractable.
arXiv Detail & Related papers (2024-07-01T11:07:23Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [82.02369596879817]
Memory of Amortized Contexts (MAC) is an efficient and effective online adaptation framework for large language models.
We show how MAC can be combined with and improve the performance of popular alternatives such as retrieval augmented generations.
arXiv Detail & Related papers (2024-03-07T08:34:57Z) - CAMELoT: Towards Large Language Models with Training-Free Consolidated
Associative Memory [38.429707659685974]
Large Language Models (LLMs) struggle to handle long input sequences due to high memory and runtime costs.
We introduce an associative memory module which can be coupled to any pre-trained (frozen) attention-based LLM without re-training.
This architecture, which we call CAMELoT, demonstrates superior performance even with a tiny context window of 128 tokens.
arXiv Detail & Related papers (2024-02-21T01:00:17Z) - Empowering Working Memory for Large Language Model Agents [9.83467478231344]
This paper explores the potential of applying cognitive psychology's working memory frameworks to large language models (LLMs)
An innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes.
This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios.
arXiv Detail & Related papers (2023-12-22T05:59:00Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.
We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.