FEDORA: Flying Event Dataset fOr Reactive behAvior
- URL: http://arxiv.org/abs/2305.14392v2
- Date: Fri, 15 Mar 2024 21:28:59 GMT
- Title: FEDORA: Flying Event Dataset fOr Reactive behAvior
- Authors: Amogh Joshi, Adarsh Kosta, Wachirawit Ponghiran, Manish Nagaraj, Kaushik Roy,
- Abstract summary: Event-based sensors have emerged as low latency and low energy alternatives to standard frame-based cameras for capturing high-speed motion.
We present Flying Event dataset fOr Reactive behAviour (FEDORA) - a fully synthetic dataset for perception tasks.
- Score: 9.470870778715689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability of resource-constrained biological systems such as fruitflies to perform complex and high-speed maneuvers in cluttered environments has been one of the prime sources of inspiration for developing vision-based autonomous systems. To emulate this capability, the perception pipeline of such systems must integrate information cues from tasks including optical flow and depth estimation, object detection and tracking, and segmentation, among others. However, the conventional approach of employing slow, synchronous inputs from standard frame-based cameras constrains these perception capabilities, particularly during high-speed maneuvers. Recently, event-based sensors have emerged as low latency and low energy alternatives to standard frame-based cameras for capturing high-speed motion, effectively speeding up perception and hence navigation. For coherence, all the perception tasks must be trained on the same input data. However, present-day datasets are curated mainly for a single or a handful of tasks and are limited in the rate of the provided ground truths. To address these limitations, we present Flying Event Dataset fOr Reactive behAviour (FEDORA) - a fully synthetic dataset for perception tasks, with raw data from frame-based cameras, event-based cameras, and Inertial Measurement Units (IMU), along with ground truths for depth, pose, and optical flow at a rate much higher than existing datasets.
Related papers
- Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range.
Event-based cameras address limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios.
This paper offers an exhaustive review of research and applications particularly in the autonomous driving context.
arXiv Detail & Related papers (2024-07-05T06:17:00Z) - Motion Segmentation for Neuromorphic Aerial Surveillance [42.04157319642197]
Event cameras offer superior temporal resolution, superior dynamic range, and minimal power requirements.
Unlike traditional frame-based sensors that capture redundant information at fixed intervals, event cameras asynchronously record pixel-level brightness changes.
We introduce a novel motion segmentation method that leverages self-supervised vision transformers on both event data and optical flow information.
arXiv Detail & Related papers (2024-05-24T04:36:13Z) - Self-supervised Event-based Monocular Depth Estimation using Cross-modal
Consistency [18.288912105820167]
We propose a self-supervised event-based monocular depth estimation framework named EMoDepth.
EMoDepth constrains the training process using the cross-modal consistency from intensity frames that are aligned with events in the pixel coordinate.
In inference, only events are used for monocular depth prediction.
arXiv Detail & Related papers (2024-01-14T07:16:52Z) - Un-EvMoSeg: Unsupervised Event-based Independent Motion Segmentation [33.21922177483246]
Event cameras are a novel type of biologically inspired vision sensor known for their high temporal resolution, high dynamic range, and low power consumption.
We propose the first event framework that generates IMO pseudo-labels using geometric constraints.
Due to its unsupervised nature, our method can handle an arbitrary number of not predetermined objects and is easily scalable to datasets where expensive IMO labels are not readily available.
arXiv Detail & Related papers (2023-11-30T18:59:32Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
This paper presents a methodology for generating event-based vision datasets from optimal landing trajectories.
We construct sequences of photorealistic images of the lunar surface with the Planet and Asteroid Natural Scene Generation Utility.
We demonstrate that the pipeline can generate realistic event-based representations of surface features by constructing a dataset of 500 trajectories.
arXiv Detail & Related papers (2023-08-01T09:14:20Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
Review of event-based vSLAM algorithms that exploit the benefits of asynchronous and irregular event streams for localization and mapping tasks.
Paper categorizes event-based vSLAM methods into four main categories: feature-based, direct, motion-compensation, and deep learning methods.
arXiv Detail & Related papers (2023-04-19T16:21:14Z) - EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
We demonstrate an application where event cameras excel: accurately estimating the impact location of fast-moving objects.
We introduce a lightweight event representation called Binary Event History Image (BEHI) to encode event data at low latency.
We show that the system is capable of achieving a success rate of 81% in catching balls targeted at different locations, with a velocity of up to 13 m/s even on compute-constrained embedded platforms.
arXiv Detail & Related papers (2023-04-14T15:23:28Z) - SCFlow: Optical Flow Estimation for Spiking Camera [50.770803466875364]
Spiking camera has enormous potential in real applications, especially for motion estimation in high-speed scenes.
Optical flow estimation has achieved remarkable success in image-based and event-based vision, but % existing methods cannot be directly applied in spike stream from spiking camera.
This paper presents, SCFlow, a novel deep learning pipeline for optical flow estimation for spiking camera.
arXiv Detail & Related papers (2021-10-08T06:16:45Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Back to Event Basics: Self-Supervised Learning of Image Reconstruction
for Event Cameras via Photometric Constancy [0.0]
Event cameras are novel vision sensors that sample, in an asynchronous fashion, brightness increments with low latency and high temporal resolution.
We propose a novel, lightweight neural network for optical flow estimation that achieves high speed inference with only a minor drop in performance.
Results across multiple datasets show that the performance of the proposed self-supervised approach is in line with the state-of-the-art.
arXiv Detail & Related papers (2020-09-17T13:30:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.