論文の概要: Brain Structure-Function Fusing Representation Learning using
Adversarial Decomposed-VAE for Analyzing MCI
- arxiv url: http://arxiv.org/abs/2305.14404v1
- Date: Tue, 23 May 2023 11:19:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 00:27:28.080283
- Title: Brain Structure-Function Fusing Representation Learning using
Adversarial Decomposed-VAE for Analyzing MCI
- Title(参考訳): mci解析のための逆分解型vaeを用いた脳構造関数fusing表現学習
- Authors: Qiankun Zuo, Baiying Lei, Ning Zhong, Yi Pan, Shuqiang Wang
- Abstract要約: fMRI画像から融合表現を学習するために,新しい脳構造関数Fusing-Representation Learning (BSFL)モデルを提案する。
提案モデルは,軽度認知障害(MCI)の予測と解析において,他の競合手法よりも優れた性能を実現する。
このモデルは、統合された脳ネットワークを再構築し、MCIの変性過程中に異常な接続を予測するための潜在的なツールとなるかもしれない。
- 参考スコア(独自算出の注目度): 17.757114703434027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating the brain structural and functional connectivity features is of
great significance in both exploring brain science and analyzing cognitive
impairment clinically. However, it remains a challenge to effectively fuse
structural and functional features in exploring the brain network. In this
paper, a novel brain structure-function fusing-representation learning (BSFL)
model is proposed to effectively learn fused representation from diffusion
tensor imaging (DTI) and resting-state functional magnetic resonance imaging
(fMRI) for mild cognitive impairment (MCI) analysis. Specifically, the
decomposition-fusion framework is developed to first decompose the feature
space into the union of the uniform and the unique spaces for each modality,
and then adaptively fuse the decomposed features to learn MCI-related
representation. Moreover, a knowledge-aware transformer module is designed to
automatically capture local and global connectivity features throughout the
brain. Also, a uniform-unique contrastive loss is further devised to make the
decomposition more effective and enhance the complementarity of structural and
functional features. The extensive experiments demonstrate that the proposed
model achieves better performance than other competitive methods in predicting
and analyzing MCI. More importantly, the proposed model could be a potential
tool for reconstructing unified brain networks and predicting abnormal
connections during the degenerative processes in MCI.
- Abstract(参考訳): 脳の構造と機能の統合は、脳科学の探求と臨床における認知障害の分析において非常に重要である。
しかし、脳ネットワークの探索において、構造的および機能的特徴を効果的に融合させることは依然として課題である。
本稿では、拡散テンソルイメージング(DTI)と静止状態機能的磁気共鳴画像(fMRI)から融合表現を効果的に学習し、軽度認知障害(MCI)解析のための新しい脳構造-機能フリング表現学習(BSFL)モデルを提案する。
具体的には、分解融合フレームワークは、まず、各モジュラリティに対する一様空間と一様空間の結合に特徴空間を分解し、次に分解された特徴を適応的に融合してMCI関連表現を学ぶ。
さらに、知識認識トランスフォーマーモジュールは、脳全体のローカルおよびグローバル接続機能を自動キャプチャするように設計されている。
また, 分解をより効果的にし, 構造的, 機能的特徴の相補性を高めるために, 均一なコントラスト損失がさらに考案された。
提案手法は,MCIの予測と解析において,他の競合手法よりも優れた性能を示す。
さらに重要なことは、提案されたモデルは、統合された脳ネットワークを再構築し、MCIの変性過程における異常な接続を予測する潜在的なツールとなる可能性がある。
関連論文リスト
- Integrated Brain Connectivity Analysis with fMRI, DTI, and sMRI Powered by Interpretable Graph Neural Networks [17.063133885403154]
我々は, 磁気共鳴イメージング, 拡散テンソルイメージング, 構造MRIを結合構造に統合した。
提案手法は,ニューラルネットワークの重み付けにマスキング戦略を導入し,マルチモーダル画像データの総合的アマルガメーションを容易にする。
このモデルは、ヒューマンコネクトームプロジェクト(Human Connectome Project)の開発研究に応用され、若年期のマルチモーダルイメージングと認知機能との関係を明らかにする。
論文 参考訳(メタデータ) (2024-08-26T13:16:42Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Alzheimer's Disease Prediction via Brain Structural-Functional Deep
Fusing Network [5.945843237682432]
機能的および構造的情報を融合するために, クロスモーダルトランスフォーマー生成対向ネットワーク (CT-GAN) を提案する。
生成した接続特性を解析することにより,AD関連脳の接続を同定することができる。
パブリックADNIデータセットの評価から,提案したCT-GANは予測性能を劇的に向上し,AD関連脳領域を効果的に検出できることが示された。
論文 参考訳(メタデータ) (2023-09-28T07:06:42Z) - Multi-task Collaborative Pre-training and Individual-adaptive-tokens
Fine-tuning: A Unified Framework for Brain Representation Learning [3.1453938549636185]
協調的事前学習と個別学習を組み合わせた統合フレームワークを提案する。
提案したMCIATはADHD-200データセット上で最先端の診断性能を実現する。
論文 参考訳(メタデータ) (2023-06-20T08:38:17Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
階層型構造機能接続ファジング(HSCF)モデルを提案し,脳構造機能接続行列を構築した。
公的なアルツハイマー病神経画像イニシアチブデータベース上で行われた幅広いテストの結果、提案モデルは競合するアプローチよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-16T05:22:25Z) - Cross-Modal Transformer GAN: A Brain Structure-Function Deep Fusing
Framework for Alzheimer's Disease [5.608783790624866]
異なる種類の神経画像データの相互融合は、アルツハイマー病(AD)の進行を予測する大きな可能性を示している
本研究では, 静止機能型磁気共鳴画像(rs-fMRI)に含まれる機能情報と拡散イメージング(DTI)に含まれる構造情報を融合するために, クロスモーダルトランスフォーマ生成逆数ネットワーク(CT-GAN)を提案する。
提案モデルでは,分類性能の向上だけでなく,AD関連脳の接続性も効果的に検出できる。
論文 参考訳(メタデータ) (2022-06-20T11:38:55Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。