Graph Meets LLM: A Novel Approach to Collaborative Filtering for Robust
Conversational Understanding
- URL: http://arxiv.org/abs/2305.14449v3
- Date: Mon, 19 Jun 2023 15:48:29 GMT
- Title: Graph Meets LLM: A Novel Approach to Collaborative Filtering for Robust
Conversational Understanding
- Authors: Zheng Chen, Ziyan Jiang, Fan Yang, Eunah Cho, Xing Fan, Xiaojiang
Huang, Yanbin Lu, Aram Galstyan
- Abstract summary: Defective queries can arise from user ambiguities, mistakes, or errors in automatic speech recognition (ASR) and natural language understanding (NLU)
Personalized query rewriting is an approach that focuses on reducing defects in queries by taking into account the user's individual behavior and preferences.
This paper presents our "Collaborative Query Rewriting" approach, which specifically addresses the task of rewriting new user interactions that have not been previously observed in the user's history.
- Score: 20.934922599119865
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Conversational AI systems such as Alexa need to understand defective queries
to ensure robust conversational understanding and reduce user friction. These
defective queries often arise from user ambiguities, mistakes, or errors in
automatic speech recognition (ASR) and natural language understanding (NLU).
Personalized query rewriting is an approach that focuses on reducing defects
in queries by taking into account the user's individual behavior and
preferences. It typically relies on an index of past successful user
interactions with the conversational AI. However, unseen interactions within
the user's history present additional challenges for personalized query
rewriting. This paper presents our "Collaborative Query Rewriting" approach,
which specifically addresses the task of rewriting new user interactions that
have not been previously observed in the user's history. This approach builds a
"User Feedback Interaction Graph" (FIG) of historical user-entity interactions
and leverages multi-hop graph traversal to enrich each user's index to cover
future unseen defective queries. The enriched user index is called a
Collaborative User Index and contains hundreds of additional entries. To
counteract precision degradation from the enlarged index, we add additional
transformer layers to the L1 retrieval model and incorporate graph-based and
guardrail features into the L2 ranking model.
Since the user index can be pre-computed, we further investigate the
utilization of a Large Language Model (LLM) to enhance the FIG for user-entity
link prediction in the Video/Music domains. Specifically, this paper
investigates the Dolly-V2 7B model. We found that the user index augmented by
the fine-tuned Dolly-V2 generation significantly enhanced the coverage of
future unseen user interactions, thereby boosting QR performance on unseen
queries compared with the graph traversal only approach.
Related papers
- User Intent Recognition and Semantic Cache Optimization-Based Query Processing Framework using CFLIS and MGR-LAU [0.0]
This work analyzed the informational, navigational, and transactional-based intents in queries for enhanced QP.
For efficient QP, the data is structured using Epanechnikov Kernel-Ordering Points To Identify the Clustering Structure (EK-OPTICS)
The extracted features, detected intents and structured data are inputted to the Multi-head Gated Recurrent Learnable Attention Unit (MGR-LAU)
arXiv Detail & Related papers (2024-06-06T20:28:05Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - Phrase Retrieval for Open-Domain Conversational Question Answering with
Conversational Dependency Modeling via Contrastive Learning [54.55643652781891]
Open-Domain Conversational Question Answering (ODConvQA) aims at answering questions through a multi-turn conversation.
We propose a method to directly predict answers with a phrase retrieval scheme for a sequence of words.
arXiv Detail & Related papers (2023-06-07T09:46:38Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - RETE: Retrieval-Enhanced Temporal Event Forecasting on Unified Query
Product Evolutionary Graph [18.826901341496143]
Temporal event forecasting is a new user behavior prediction task in a unified query product evolutionary graph.
We propose a novel RetrievalEnhanced Event forecasting framework.
Unlike existing methods, we propose methods that enhance user representations via roughly connected entities in the whole graph.
arXiv Detail & Related papers (2022-02-12T19:27:56Z) - Relation-aware Heterogeneous Graph for User Profiling [24.076585294260816]
We propose to leverage the relation-aware heterogeneous graph method for user profiling.
We adopt the query, key, and value mechanism in a transformer fashion for heterogeneous message passing.
We conduct experiments on two real-world e-commerce datasets and observe a significant performance boost of our approach.
arXiv Detail & Related papers (2021-10-14T06:59:30Z) - IntentVizor: Towards Generic Query Guided Interactive Video
Summarization Using Slow-Fast Graph Convolutional Networks [2.5234156040689233]
IntentVizor is an interactive video summarization framework guided by genric multi-modality queries.
We use a set of intents to represent the inputs of users to design our new interactive visual analytic interface.
arXiv Detail & Related papers (2021-09-30T03:44:02Z) - Session-Aware Query Auto-completion using Extreme Multi-label Ranking [61.753713147852125]
We take the novel approach of modeling session-aware query auto-completion as an e Multi-Xtreme Ranking (XMR) problem.
We adapt a popular XMR algorithm for this purpose by proposing several modifications to the key steps in the algorithm.
Our approach meets the stringent latency requirements for auto-complete systems while leveraging session information in making suggestions.
arXiv Detail & Related papers (2020-12-09T17:56:22Z) - Personalized Query Rewriting in Conversational AI Agents [7.086654234990377]
We propose a query rewriting approach by leveraging users' historically successful interactions as a form of memory.
We present a neural retrieval model and a pointer-generator network with hierarchical attention and show that they perform significantly better at the query rewriting task with the aforementioned user memories than without.
arXiv Detail & Related papers (2020-11-09T20:45:39Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers.
We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC.
arXiv Detail & Related papers (2020-05-24T11:37:22Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE) is able to extend the predefined user persona description with semantically correlated content.
PEE consists of two main modules: persona exploration and persona exploitation.
Our approach outperforms state-of-the-art baselines in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2020-02-06T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.