論文の概要: ReadMe++: Benchmarking Multilingual Language Models for Multi-Domain Readability Assessment
- arxiv url: http://arxiv.org/abs/2305.14463v4
- Date: Wed, 16 Oct 2024 14:27:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:40:22.008922
- Title: ReadMe++: Benchmarking Multilingual Language Models for Multi-Domain Readability Assessment
- Title(参考訳): ReadMe++: マルチドメイン可読性評価のための多言語言語モデルのベンチマーク
- Authors: Tarek Naous, Michael J. Ryan, Anton Lavrouk, Mohit Chandra, Wei Xu,
- Abstract要約: 本稿では、アラビア語、英語、フランス語、ヒンディー語、ロシア語で9757文の人間のアノテーションを付加した多言語マルチドメインデータセットであるReadMe++を紹介する。
ReadMe++を使って、教師付き、教師なし、および少数ショットプロンプト設定において、多言語および単言語言語モデルをベンチマークする。
本実験は,ReadMe++で学習したモデルによる優れたドメイン一般化と言語間変換能力の強化によるエキサイティングな結果を示す。
- 参考スコア(独自算出の注目度): 12.704628912075218
- License:
- Abstract: We present a comprehensive evaluation of large language models for multilingual readability assessment. Existing evaluation resources lack domain and language diversity, limiting the ability for cross-domain and cross-lingual analyses. This paper introduces ReadMe++, a multilingual multi-domain dataset with human annotations of 9757 sentences in Arabic, English, French, Hindi, and Russian, collected from 112 different data sources. This benchmark will encourage research on developing robust multilingual readability assessment methods. Using ReadMe++, we benchmark multilingual and monolingual language models in the supervised, unsupervised, and few-shot prompting settings. The domain and language diversity in ReadMe++ enable us to test more effective few-shot prompting, and identify shortcomings in state-of-the-art unsupervised methods. Our experiments also reveal exciting results of superior domain generalization and enhanced cross-lingual transfer capabilities by models trained on ReadMe++. We will make our data publicly available and release a python package tool for multilingual sentence readability prediction using our trained models at: https://github.com/tareknaous/readme
- Abstract(参考訳): 本稿では,多言語可読性評価のための大規模言語モデルの包括的評価を行う。
既存の評価リソースにはドメインと言語の多様性がなく、クロスドメインとクロスランガル分析の能力に制限がある。
本稿では、アラビア語、英語、フランス語、ヒンディー語、ロシア語で9757文の人間のアノテーションを付加した多言語マルチドメインデータセットであるReadMe++について紹介する。
このベンチマークは、堅牢な多言語可読性評価手法の開発を奨励する。
ReadMe++を使って、教師付き、教師なし、および少数ショットプロンプト設定において、多言語および単言語言語モデルをベンチマークする。
ReadMe++のドメインと言語の多様性は、より効果的な数ショットプロンプトのテストを可能にし、最先端の教師なしメソッドの欠点を特定します。
また,ReadMe++で学習したモデルによる優れたドメイン一般化と言語間転送機能の拡張によるエキサイティングな結果も明らかにした。
トレーニングされたモデルを使用して、データの公開と、多言語文の可読性予測のためのpythonパッケージツールをリリースします。
関連論文リスト
- The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Automatic Discrimination of Human and Neural Machine Translation in
Multilingual Scenarios [4.631167282648452]
我々は人間と機械の翻訳を自動で識別するタスクに取り組む。
複数言語と多言語事前学習言語モデルを考慮した多言語環境で実験を行う。
論文 参考訳(メタデータ) (2023-05-31T11:41:24Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
多言語大言語モデル(MLLM)は、多くの異なる言語からのデータに基づいて共同で訓練される。
言語がどの程度、どの条件下で、互いのデータに依存しているかは、まだ不明である。
MLLMは、細調整の初期段階から複数の言語からのデータに依存しており、細調整の進行に伴って、この依存度が徐々に増加することが判明した。
論文 参考訳(メタデータ) (2023-05-22T17:47:41Z) - Detecting Languages Unintelligible to Multilingual Models through Local
Structure Probes [15.870989191524094]
我々は、言語間モデルでよく理解されていない言語を検出するために、未理解のテキストのみを必要とする一般的なアプローチを開発する。
我々のアプローチは、もしモデルの理解が言語のテキストに対する摂動に無関心であるなら、その言語について限られた理解を持つ可能性が高いという仮説から導かれる。
論文 参考訳(メタデータ) (2022-11-09T16:45:16Z) - Improving Cross-Lingual Reading Comprehension with Self-Training [62.73937175625953]
現在の最新モデルは、いくつかのベンチマークで人間のパフォーマンスを上回っています。
前作では、ゼロショットのクロスリンガル読解のための事前訓練された多言語モデルの能力を明らかにしている。
本稿では,ラベルのないデータを利用して性能を向上する。
論文 参考訳(メタデータ) (2021-05-08T08:04:30Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
言語モデル(LM)は、事実の知識を捉えるのに驚くほど成功した。
しかし、LMの実際の表現能力の研究は、ほぼ間違いなく英語で行われている。
我々は23の語型的多様言語に対するクローゼスタイルプローブのベンチマークを作成する。
論文 参考訳(メタデータ) (2020-10-13T05:29:56Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。