Negative Feedback Training: A Novel Concept to Improve Robustness of NVCIM DNN Accelerators
- URL: http://arxiv.org/abs/2305.14561v4
- Date: Fri, 12 Apr 2024 21:56:21 GMT
- Title: Negative Feedback Training: A Novel Concept to Improve Robustness of NVCIM DNN Accelerators
- Authors: Yifan Qin, Zheyu Yan, Wujie Wen, Xiaobo Sharon Hu, Yiyu Shi,
- Abstract summary: Non-volatile memory (NVM) devices excel in energy efficiency and latency when performing Deep Neural Network (DNN) inference.
We propose a novel training concept: Negative Feedback Training (NFT) leveraging the multi-scale noisy information captured from network.
Our methods outperform existing state-of-the-art methods with up to a 46.71% improvement in inference accuracy.
- Score: 11.832487701641723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compute-in-memory (CIM) accelerators built upon non-volatile memory (NVM) devices excel in energy efficiency and latency when performing Deep Neural Network (DNN) inference, thanks to their in-situ data processing capability. However, the stochastic nature and intrinsic variations of NVM devices often result in performance degradation in DNN inference. Introducing these non-ideal device behaviors during DNN training enhances robustness, but drawbacks include limited accuracy improvement, reduced prediction confidence, and convergence issues. This arises from a mismatch between the deterministic training and non-deterministic device variations, as such training, though considering variations, relies solely on the model's final output. In this work, we draw inspiration from the control theory and propose a novel training concept: Negative Feedback Training (NFT) leveraging the multi-scale noisy information captured from network. We develop two specific NFT instances, Oriented Variational Forward (OVF) and Intermediate Representation Snapshot (IRS). Extensive experiments show that our methods outperform existing state-of-the-art methods with up to a 46.71% improvement in inference accuracy while reducing epistemic uncertainty, boosting output confidence, and improving convergence probability. Their effectiveness highlights the generality and practicality of our NFT concept in enhancing DNN robustness against device variations.
Related papers
- TSB: Tiny Shared Block for Efficient DNN Deployment on NVCIM Accelerators [11.496631244103773]
"Tiny Shared Block (TSB)" integrates a small shared 1x1 convolution block into the Deep Neural Network architecture.
TSB achieves over 20x inference accuracy gap improvement, over 5x training speedup, and weights-to-device mapping cost reduction.
arXiv Detail & Related papers (2024-05-08T20:53:38Z) - Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations [0.22499166814992438]
We propose a method to inherently enhance the robustness and inference accuracy of BayNNs deployed in in-memory computing architectures.
Empirical results show a graceful degradation in inference accuracy, with an improvement of up to $58.11%$.
arXiv Detail & Related papers (2024-01-23T00:27:31Z) - Compute-in-Memory based Neural Network Accelerators for Safety-Critical
Systems: Worst-Case Scenarios and Protections [8.813981342105151]
We study the problem of pinpointing the worst-case performance of CiM accelerators affected by device variations.
We propose a novel worst-case-aware training technique named A-TRICE that efficiently combines adversarial training and noise-injection training.
Our experimental results demonstrate that A-TRICE improves the worst-case accuracy under device variations by up to 33%.
arXiv Detail & Related papers (2023-12-11T05:56:00Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Fault-Aware Design and Training to Enhance DNNs Reliability with
Zero-Overhead [67.87678914831477]
Deep Neural Networks (DNNs) enable a wide series of technological advancements.
Recent findings indicate that transient hardware faults may corrupt the models prediction dramatically.
In this work, we propose to tackle the reliability issue both at training and model design time.
arXiv Detail & Related papers (2022-05-28T13:09:30Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - FitAct: Error Resilient Deep Neural Networks via Fine-Grained
Post-Trainable Activation Functions [0.05249805590164901]
Deep neural networks (DNNs) are increasingly being deployed in safety-critical systems such as personal healthcare devices and self-driving cars.
In this paper, we propose FitAct, a low-cost approach to enhance the error resilience of DNNs by deploying fine-grained post-trainable activation functions.
arXiv Detail & Related papers (2021-12-27T07:07:50Z) - Dynamic Hard Pruning of Neural Networks at the Edge of the Internet [11.605253906375424]
Dynamic Hard Pruning (DynHP) technique incrementally prunes the network during training.
DynHP enables a tunable size reduction of the final neural network and reduces the NN memory occupancy during training.
Freed memory is reused by a emphdynamic batch sizing approach to counterbalance the accuracy degradation caused by the hard pruning strategy.
arXiv Detail & Related papers (2020-11-17T10:23:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.