論文の概要: Zero-shot Task Preference Addressing Enabled by Imprecise Bayesian
Continual Learning
- arxiv url: http://arxiv.org/abs/2305.14782v1
- Date: Wed, 24 May 2023 06:39:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 19:00:23.765512
- Title: Zero-shot Task Preference Addressing Enabled by Imprecise Bayesian
Continual Learning
- Title(参考訳): ベイズ連続学習によるゼロショットタスク選択アドレッシング
- Authors: Pengyuan Lu and Michele Caprio and Eric Eaton and Insup Lee
- Abstract要約: 本稿では,タスクパフォーマンストレードオフの優先事項に対処するため,IBCL(Imrecise Bayesian Continual Learning)を提案する。
IBCLは、知識ベースから好み順応モデルを構築するために、追加のトレーニングオーバーヘッドを必要としない。
IBCLで得られたモデルには、好むパラメータを識別する保証があることが示されている。
- 参考スコア(独自算出の注目度): 19.11678487931003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Like generic multi-task learning, continual learning has the nature of
multi-objective optimization, and therefore faces a trade-off between the
performance of different tasks. That is, to optimize for the current task
distribution, it may need to compromise performance on some tasks to improve on
others. This means there exist multiple models that are each optimal at
different times, each addressing a distinct task-performance trade-off.
Researchers have discussed how to train particular models to address specific
preferences on these trade-offs. However, existing algorithms require
additional sample overheads -- a large burden when there are multiple, possibly
infinitely many, preferences. As a response, we propose Imprecise Bayesian
Continual Learning (IBCL). Upon a new task, IBCL (1) updates a knowledge base
in the form of a convex hull of model parameter distributions and (2) obtains
particular models to address preferences with zero-shot. That is, IBCL does not
require any additional training overhead to construct preference-addressing
models from its knowledge base. We show that models obtained by IBCL have
guarantees in identifying the preferred parameters. Moreover, experiments show
that IBCL is able to locate the Pareto set of parameters given a preference,
maintain similar to better performance than baseline methods, and significantly
reduce training overhead via zero-shot preference addressing.
- Abstract(参考訳): 一般的なマルチタスク学習と同様に、連続学習は多目的最適化の性質を持ち、異なるタスクのパフォーマンス間のトレードオフに直面します。
つまり、現在のタスク分散を最適化するには、他のタスクを改善するために、いくつかのタスクのパフォーマンスを損なう必要があるかもしれない。
これは、それぞれが異なるタイミングで最適な複数のモデルが存在し、それぞれが異なるタスクパフォーマンストレードオフに対処することを意味する。
研究者は、これらのトレードオフに関する特定の好みに対応するために、特定のモデルをトレーニングする方法について議論した。
しかし、既存のアルゴリズムは追加のサンプルオーバーヘッドを必要とします。
その結果,Imrecise Bayesian Continual Learning (IBCL)を提案する。
新しいタスクを行うと、ibcl (1) はモデルパラメータ分布の凸包の形で知識ベースを更新し、(2)ゼロショットで選好に対処するための特定のモデルを取得する。
すなわち、IBCLはその知識ベースから好み適応モデルを構築するために追加のトレーニングオーバーヘッドを必要としない。
ibclによって得られたモデルが望ましいパラメータを識別する保証を持つことを示す。
さらに、IBCLは、好みのパラメータのPareto集合を特定でき、ベースライン法よりも優れた性能を維持し、ゼロショット優先アドレッシングによるトレーニングオーバーヘッドを大幅に削減できることを示した。
関連論文リスト
- Optimize Incompatible Parameters through Compatibility-aware Knowledge Integration [104.52015641099828]
既存の研究は、そのようなパラメータを除去したり、複数の異なる事前訓練されたモデルの出力をマージすることに長けている。
本稿では,Deep AssessmentとDeep SplicingからなるCompatibility-Aware Knowledge Integration (CKI)を提案する。
統合モデルは推論やさらなる微調整に直接使用することができる。
論文 参考訳(メタデータ) (2025-01-10T01:42:43Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - Few-shot Prompting for Pairwise Ranking: An Effective Non-Parametric Retrieval Model [18.111868378615206]
本稿では,複雑な訓練パイプラインを必要とせず,教師付きモデルに近い性能を達成できる一対数ショットローダを提案する。
また,複雑なトレーニングパイプラインを必要とせず,教師付きモデルに近い性能を実現する。
論文 参考訳(メタデータ) (2024-09-26T11:19:09Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
Amortized Pareto Front (MAP) を用いた新しい低演算アルゴリズム Model Merging を導入する。
MAPは、複数のモデルをマージするためのスケーリング係数のセットを効率的に識別し、関連するトレードオフを反映する。
また,タスク数が比較的少ないシナリオではベイジアンMAP,タスク数の多い状況ではNested MAPを導入し,計算コストを削減した。
論文 参考訳(メタデータ) (2024-06-11T17:55:25Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
オンラインバッチ選択として知られる一般的な研究ラインでは、トレーニングプロセス中の情報サブセットの選択について検討している。
バニラ参照モデルフリーメソッドは、独立してデータをサンプリング的にスコア付けし、選択する。
DivBS(Diversified Batch Selection)を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:12:20Z) - IBCL: Zero-shot Model Generation for Task Trade-offs in Continual
Learning [15.77524891010002]
本稿では,タスクトレードオフの優先事項に対処するため,IBCL(Imrecise Bayesian Continual Learning)を提案する。
IBCLは、知識ベースから好み順応モデルを生成するために、追加のトレーニングオーバーヘッドを必要としない。
IBCLは平均タスク毎の精度を23%、ピークタスク毎の精度を15%改善する。
論文 参考訳(メタデータ) (2023-10-04T17:30:50Z) - Building a Winning Team: Selecting Source Model Ensembles using a
Submodular Transferability Estimation Approach [20.86345962679122]
公開されている事前訓練されたモデルの目標タスクへの転送可能性の推定は、伝達学習タスクにとって重要な場所となっている。
本稿では, モデルアンサンブルの下流タスクへの転送可能性を評価するために, 最適なtranSportベースのsuBmOdular tRaNsferability Metrics(OSBORN)を提案する。
論文 参考訳(メタデータ) (2023-09-05T17:57:31Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
トレーニングデータのサブセットのみをラベル付けするバッチアクティブな学習問題を考察する。
制約付き最適化を用いて学習問題を定式化し、各制約はラベル付きサンプルにモデルの性能を拘束する。
数値実験により,提案手法は最先端の能動学習法と同等かそれ以上に機能することを示した。
論文 参考訳(メタデータ) (2022-02-08T19:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。