Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners
- URL: http://arxiv.org/abs/2305.14825v2
- Date: Thu, 8 Jun 2023 16:38:51 GMT
- Title: Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners
- Authors: Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu,
Yitao Liang, Muhan Zhang
- Abstract summary: Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
- Score: 75.85554779782048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergent few-shot reasoning capabilities of Large Language Models (LLMs)
have excited the natural language and machine learning community over recent
years. Despite of numerous successful applications, the underlying mechanism of
such in-context capabilities still remains unclear. In this work, we
hypothesize that the learned \textit{semantics} of language tokens do the most
heavy lifting during the reasoning process. Different from human's symbolic
reasoning process, the semantic representations of LLMs could create strong
connections among tokens, thus composing a superficial logical chain. To test
our hypothesis, we decouple semantics from the language reasoning process and
evaluate three kinds of reasoning abilities, i.e., deduction, induction and
abduction. Our findings reveal that semantics play a vital role in LLMs'
in-context reasoning -- LLMs perform significantly better when semantics are
consistent with commonsense but struggle to solve symbolic or
counter-commonsense reasoning tasks by leveraging in-context new knowledge. The
surprising observations question whether modern LLMs have mastered the
inductive, deductive and abductive reasoning abilities as in human
intelligence, and motivate research on unveiling the magic existing within the
black-box LLMs. On the whole, our analysis provides a novel perspective on the
role of semantics in developing and evaluating language models' reasoning
abilities. Code is available at {\url{https://github.com/XiaojuanTang/ICSR}}.
Related papers
- Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs [99.76347807139615]
Reasoning encompasses two typical types: deductive reasoning and inductive reasoning.
Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning.
This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning?
arXiv Detail & Related papers (2024-07-31T18:47:11Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
This paper reviews the rapidly expanding field of prompt-based reasoning with LLMs.
Our taxonomy identifies different ways to generate, evaluate, and control multi-step reasoning.
We find that self-improvement, self-reflection, and some meta abilities of the reasoning processes are possible through the judicious use of prompts.
arXiv Detail & Related papers (2024-07-16T08:49:35Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
This study investigates the capabilities and risks of Large Language Models (LLMs)
It uses the innovative parallels between the statistical patterns of word relationships within LLMs and Martin Heidegger's concepts of "ready-to-hand" and "present-at-hand"
Our findings reveal that while LLMs possess the capability for Direct Explicative Reasoning and Pseudo Rational Reasoning, they fall short in authentic rational reasoning and have no creative reasoning capabilities.
arXiv Detail & Related papers (2024-03-05T19:40:53Z) - Do Large Language Models Understand Logic or Just Mimick Context? [14.081178100662163]
This paper investigates the reasoning capabilities of large language models (LLMs) on two logical reasoning datasets.
It is found that LLMs do not truly understand logical rules; rather, in-context learning has simply enhanced the likelihood of these models arriving at the correct answers.
arXiv Detail & Related papers (2024-02-19T12:12:35Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
Large language models (LLMs) have recently demonstrated significant potential in mathematical abilities.
LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities.
This paper presents a novel method for integrating LLMs into the abductive learning framework.
arXiv Detail & Related papers (2023-04-21T16:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.