Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs
- URL: http://arxiv.org/abs/2408.00114v2
- Date: Wed, 7 Aug 2024 00:52:07 GMT
- Title: Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs
- Authors: Kewei Cheng, Jingfeng Yang, Haoming Jiang, Zhengyang Wang, Binxuan Huang, Ruirui Li, Shiyang Li, Zheng Li, Yifan Gao, Xian Li, Bing Yin, Yizhou Sun,
- Abstract summary: Reasoning encompasses two typical types: deductive reasoning and inductive reasoning.
Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning.
This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning?
- Score: 99.76347807139615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning encompasses two typical types: deductive reasoning and inductive reasoning. Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning, leading to a blending of the two. This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning? While the deductive reasoning capabilities of LLMs, (i.e. their capacity to follow instructions in reasoning tasks), have received considerable attention, their abilities in true inductive reasoning remain largely unexplored. To investigate into the true inductive reasoning capabilities of LLMs, we propose a novel framework, SolverLearner. This framework enables LLMs to learn the underlying function (i.e., $y = f_w(x)$), that maps input data points $(x)$ to their corresponding output values $(y)$, using only in-context examples. By focusing on inductive reasoning and separating it from LLM-based deductive reasoning, we can isolate and investigate inductive reasoning of LLMs in its pure form via SolverLearner. Our observations reveal that LLMs demonstrate remarkable inductive reasoning capabilities through SolverLearner, achieving near-perfect performance with ACC of 1 in most cases. Surprisingly, despite their strong inductive reasoning abilities, LLMs tend to relatively lack deductive reasoning capabilities, particularly in tasks involving ``counterfactual'' reasoning.
Related papers
- MIRAGE: Evaluating and Explaining Inductive Reasoning Process in Language Models [19.81485079689837]
We evaluate large language models' capabilities in inductive and deductive stages.
We find that the models tend to consistently conduct correct deduction without correct inductive rules.
In the inductive reasoning process, the model tends to focus on observed facts that are close to the current test example in feature space.
arXiv Detail & Related papers (2024-10-12T14:12:36Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Meaningful Learning: Advancing Abstract Reasoning in Large Language Models via Generic Fact Guidance [38.49506722997423]
Large language models (LLMs) have developed impressive performance and strong explainability across various reasoning scenarios.
Despite this, when tasked with simple questions supported by a generic fact, LLMs often fail to provide consistent and precise answers.
This has sparked a vigorous debate about whether LLMs are genuinely reasoning or merely memorizing.
arXiv Detail & Related papers (2024-03-14T04:06:13Z) - Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement [92.61557711360652]
Language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks.
We conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement.
We reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
arXiv Detail & Related papers (2023-10-12T17:51:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Learning Deductive Reasoning from Synthetic Corpus based on Formal Logic [14.503982715625902]
We study a synthetic corpus based approach for language models (LMs) to acquire logical deductive reasoning ability.
We adopt a well-grounded set of deduction rules based on formal logic theory, which can derive any other deduction rules when combined in a multistep way.
We empirically verify that LMs trained on FLD corpora acquire more generalizable reasoning ability.
arXiv Detail & Related papers (2023-08-11T13:15:35Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Can Pretrained Language Models (Yet) Reason Deductively? [72.9103833294272]
We conduct a comprehensive evaluation of the learnable deductive (also known as explicit) reasoning capability of PLMs.
Our main results suggest that PLMs cannot yet perform reliable deductive reasoning.
We reach beyond (misleading) task performance, revealing that PLMs are still far from human-level reasoning capabilities.
arXiv Detail & Related papers (2022-10-12T17:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.