Exploring Sentiment Analysis Techniques in Natural Language Processing:
A Comprehensive Review
- URL: http://arxiv.org/abs/2305.14842v1
- Date: Wed, 24 May 2023 07:48:41 GMT
- Title: Exploring Sentiment Analysis Techniques in Natural Language Processing:
A Comprehensive Review
- Authors: Karthick Prasad Gunasekaran
- Abstract summary: Sentiment analysis (SA) is the automated process of detecting and understanding the emotions conveyed through written text.
SA has gained significant popularity in the field of Natural Language Processing (NLP)
This study aims to enhance the efficiency and accuracy of SA processes, leading to smoother and error-free outcomes.
- Score: 0.15229257192293202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment analysis (SA) is the automated process of detecting and
understanding the emotions conveyed through written text. Over the past decade,
SA has gained significant popularity in the field of Natural Language
Processing (NLP). With the widespread use of social media and online platforms,
SA has become crucial for companies to gather customer feedback and shape their
marketing strategies. Additionally, researchers rely on SA to analyze public
sentiment on various topics. In this particular research study, a comprehensive
survey was conducted to explore the latest trends and techniques in SA. The
survey encompassed a wide range of methods, including lexicon-based,
graph-based, network-based, machine learning, deep learning, ensemble-based,
rule-based, and hybrid techniques. The paper also addresses the challenges and
opportunities in SA, such as dealing with sarcasm and irony, analyzing
multi-lingual data, and addressing ethical concerns. To provide a practical
case study, Twitter was chosen as one of the largest online social media
platforms. Furthermore, the researchers shed light on the diverse application
areas of SA, including social media, healthcare, marketing, finance, and
politics. The paper also presents a comparative and comprehensive analysis of
existing trends and techniques, datasets, and evaluation metrics. The ultimate
goal is to offer researchers and practitioners a systematic review of SA
techniques, identify existing gaps, and suggest possible improvements. This
study aims to enhance the efficiency and accuracy of SA processes, leading to
smoother and error-free outcomes.
Related papers
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - Aspect-Based Sentiment Analysis Techniques: A Comparative Study [2.0813232115705618]
Aspect-based Sentiment Analysis (ABSA) is supported by advances in Artificial Intelligence (AI)
In this study, we compare several deep-NN methods for ABSA on two benchmark datasets (Restaurant14 and Laptop-14)
FAST LSA obtains the best overall results of 87.6% and 82.6% accuracy but does not pass LSA+DeBERTa which reports 90.33% and 86.21% accuracy respectively.
arXiv Detail & Related papers (2024-07-03T06:21:07Z) - SMP Challenge: An Overview and Analysis of Social Media Prediction Challenge [63.311045291016555]
Social Media Popularity Prediction (SMPP) is a crucial task that involves automatically predicting future popularity values of online posts.
This paper summarizes the challenging task, data, and research progress.
arXiv Detail & Related papers (2024-05-17T02:36:14Z) - Arabic Text Sentiment Analysis: Reinforcing Human-Performed Surveys with
Wider Topic Analysis [49.1574468325115]
The in-depth study manually analyses 133 ASA papers published in the English language between 2002 and 2020.
The main findings show the different approaches used for ASA: machine learning, lexicon-based and hybrid approaches.
There is a need to develop ASA tools that can be used in industry, as well as in academia, for Arabic text SA.
arXiv Detail & Related papers (2024-03-04T10:37:48Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
We build a Social AI Data Infrastructure, which consists of a comprehensive social AI taxonomy and a data library of 480 NLP datasets.
Our infrastructure allows us to analyze existing dataset efforts, and also evaluate language models' performance in different social intelligence aspects.
We show there is a need for multifaceted datasets, increased diversity in language and culture, more long-tailed social situations, and more interactive data in future social intelligence data efforts.
arXiv Detail & Related papers (2024-02-28T00:22:42Z) - A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
Sentiment analysis (SA) is an emerging field in text mining.
It is the process of computationally identifying and categorizing opinions expressed in a piece of text over different social media platforms.
arXiv Detail & Related papers (2023-11-19T06:29:41Z) - A Systematic Review of Aspect-based Sentiment Analysis: Domains, Methods, and Trends [2.781593421115434]
Aspect-based sentiment analysis (ABSA) is a fine-grained type of sentiment analysis that identifies aspects and their associated opinions from a text.
With the surge of digital opinionated text data, ABSA gained increasing popularity for its ability to mine more detailed and targeted insights.
This paper presents a systematic literature review of ABSA studies with a focus on trends and high-level relationships among these fundamental components.
arXiv Detail & Related papers (2023-11-16T06:01:47Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Comparative Study of Sentiment Analysis for Multi-Sourced Social Media
Platforms [0.0]
In this paper, we provide a comparative analysis using techniques of lexicon-based, machine learning and deep learning approaches.
The dataset we used was a multi-source dataset from the comment section of various social networking sites like Twitter, Reddit, etc.
arXiv Detail & Related papers (2022-12-09T06:33:49Z) - A Comprehensive Review of Visual-Textual Sentiment Analysis from Social
Media Networks [2.048226951354646]
Social media networks have become a significant aspect of people's lives, serving as a platform for their ideas, opinions and emotions.
The analysis of these feelings revealed various applications, including brand evaluations, YouTube film reviews and healthcare applications.
Our study focuses on the field of multimodal sentiment analysis, which examines visual and textual data posted on social media networks.
arXiv Detail & Related papers (2022-07-05T16:28:47Z) - Sentiment Analysis Based on Deep Learning: A Comparative Study [69.09570726777817]
The study of public opinion can provide us with valuable information.
The efficiency and accuracy of sentiment analysis is being hindered by the challenges encountered in natural language processing.
This paper reviews the latest studies that have employed deep learning to solve sentiment analysis problems.
arXiv Detail & Related papers (2020-06-05T16:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.