Sentiment Analysis of Movie Reviews Using BERT
- URL: http://arxiv.org/abs/2502.18841v1
- Date: Wed, 26 Feb 2025 05:30:19 GMT
- Title: Sentiment Analysis of Movie Reviews Using BERT
- Authors: Gibson Nkhata, Usman Anjum, Justin Zhan,
- Abstract summary: Sentiment Analysis (SA) or opinion mining is analysis of emotions and opinions from any kind of text.<n>This work aims to finetune Bidirectional Representations from Transformers (BERT) with Bidirectional Long ShortTerm Memory (BiLSTM) for movie reviews sentiment analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sentiment Analysis (SA) or opinion mining is analysis of emotions and opinions from any kind of text. SA helps in tracking peoples viewpoints and it is an important factor when it comes to social media monitoring product and brand recognition customer satisfaction customer loyalty advertising and promotions success and product acceptance. That is why SA is one of the active research areas in Natural Language Processing (NLP). SA is applied on data sourced from various media platforms to mine sentiment knowledge from them. Various approaches have been deployed in the literature to solve the problem. Most techniques devise complex and sophisticated frameworks in order to attain optimal accuracy. This work aims to finetune Bidirectional Encoder Representations from Transformers (BERT) with Bidirectional Long Short-Term Memory (BiLSTM) for movie reviews sentiment analysis and still provide better accuracy than the State-of-The-Art (SOTA) methods. The paper also shows how sentiment analysis can be applied if someone wants to recommend a certain movie for example by computing overall polarity of its sentiments predicted by the model. That is our proposed method serves as an upper-bound baseline in prediction of a predominant reaction to a movie. To compute overall polarity a heuristic algorithm is applied to BERTBiLSTM output vector. Our model can be extended to three-class four-class or any fine-grained classification and apply overall polarity computation again. This is intended to be exploited in future work.
Related papers
- Fine-tuning BERT with Bidirectional LSTM for Fine-grained Movie Reviews Sentiment Analysis [0.0]
We fine-tune the pre-trained BERT model with Bidirectional LSTM (BiLSTM) to enhance both binary and fine-grained SA for movie reviews.
We present our findings on binary classification as well as fine-grained classification utilizing benchmark datasets.
arXiv Detail & Related papers (2025-02-28T03:30:48Z) - AxBench: Steering LLMs? Even Simple Baselines Outperform Sparse Autoencoders [73.37603699731329]
We introduce AxBench, a large-scale benchmark for steering and concept detection.<n>For steering, we find that prompting outperforms all existing methods, followed by finetuning.<n>For concept detection, representation-based methods such as difference-in-means, perform the best.
arXiv Detail & Related papers (2025-01-28T18:51:24Z) - PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
This paper bridges the gaps by introducing a multimodal conversational Sentiment Analysis (ABSA)
To benchmark the tasks, we construct PanoSent, a dataset annotated both manually and automatically, featuring high quality, large scale, multimodality, multilingualism, multi-scenarios, and covering both implicit and explicit sentiment elements.
To effectively address the tasks, we devise a novel Chain-of-Sentiment reasoning framework, together with a novel multimodal large language model (namely Sentica) and a paraphrase-based verification mechanism.
arXiv Detail & Related papers (2024-08-18T13:51:01Z) - Do LLMs Think Fast and Slow? A Causal Study on Sentiment Analysis [136.13390762317698]
Sentiment analysis (SA) aims to identify the sentiment expressed in a text, such as a product review.
Given a review and the sentiment associated with it, this work formulates SA as a combination of two tasks.
We classify a sample as C1 if its overall sentiment score approximates an average of all the sentence-level sentiments in the review, and C2 if the overall sentiment score approximates an average of the peak and end sentiments.
arXiv Detail & Related papers (2024-04-17T04:04:34Z) - Understanding Social Perception, Interactions, and Safety Aspects of Sidewalk Delivery Robots Using Sentiment Analysis [0.3069335774032178]
This article presents a comprehensive sentiment analysis (SA) of comments on YouTube videos related to Sidewalk Delivery Robots (SDRs)
We manually annotated the collected YouTube comments with three sentiment labels: negative (0), positive (1), and neutral (2).
We then constructed models for text sentiment classification and tested the models' performance on both binary and ternary classification tasks.
arXiv Detail & Related papers (2024-03-09T23:28:01Z) - Sentiment Analysis through LLM Negotiations [58.67939611291001]
A standard paradigm for sentiment analysis is to rely on a singular LLM and makes the decision in a single round.
This paper introduces a multi-LLM negotiation framework for sentiment analysis.
arXiv Detail & Related papers (2023-11-03T12:35:29Z) - Leveraging ChatGPT As Text Annotation Tool For Sentiment Analysis [6.596002578395151]
ChatGPT is a new product of OpenAI and has emerged as the most popular AI product.
This study explores the use of ChatGPT as a tool for data labeling for different sentiment analysis tasks.
arXiv Detail & Related papers (2023-06-18T12:20:42Z) - Exploring Sentiment Analysis Techniques in Natural Language Processing:
A Comprehensive Review [0.15229257192293202]
Sentiment analysis (SA) is the automated process of detecting and understanding the emotions conveyed through written text.
SA has gained significant popularity in the field of Natural Language Processing (NLP)
This study aims to enhance the efficiency and accuracy of SA processes, leading to smoother and error-free outcomes.
arXiv Detail & Related papers (2023-05-24T07:48:41Z) - Auto-ABSA: Cross-Domain Aspect Detection and Sentiment Analysis Using Auxiliary Sentences [1.368483823700914]
We proposed a method that uses an auxiliary sentence about aspects that the sentence contains to help sentiment prediction.
The first is aspect detection, which uses a multi-aspects detection model to predict all aspects that the sentence has.
The second is to do out-of-domain aspect-based sentiment analysis(ABSA), train sentiment classification model with one kind of dataset and validate it with another kind of dataset.
arXiv Detail & Related papers (2022-01-05T04:23:29Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - SentiLSTM: A Deep Learning Approach for Sentiment Analysis of Restaurant
Reviews [13.018530502810128]
This paper proposes, a deep learning-based technique (i.e., BiLSTM) to classify the reviews provided by the clients of the restaurant into positive and negative polarities.
The results of the evaluation on test dataset show that BiLSTM technique produced in the highest accuracy of 91.35%.
arXiv Detail & Related papers (2020-11-19T06:24:42Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.