論文の概要: M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box
Machine-Generated Text Detection
- arxiv url: http://arxiv.org/abs/2305.14902v1
- Date: Wed, 24 May 2023 08:55:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 18:04:57.024797
- Title: M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box
Machine-Generated Text Detection
- Title(参考訳): m4:マルチジェネレータ、マルチドメイン、多言語ブラックボックスマシン生成テキスト検出
- Authors: Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan Su, Artem
Shelmanov, Akim Tsvigun, Chenxi Whitehouse, Osama Mohammed Afzal, Tarek
Mahmoud, Alham Fikri Aji, Preslav Nakov
- Abstract要約: 大規模言語モデル(LLM)は,多様なユーザクエリに対して,流動的な応答を生成する優れた能力を示している。
これはまた、ジャーナリズム、教育、学術的文脈におけるそのようなテキストの潜在的な誤用に関する懸念も生んでいる。
まず、機械生成テキスト検出のためのマルチジェネレータ、マルチドメイン、多言語コーパスである大規模ベンチマークM4を紹介する。
- 参考スコア(独自算出の注目度): 15.267254242339982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capability to
generate fluent responses to a wide variety of user queries, but this has also
resulted in concerns regarding the potential misuse of such texts in
journalism, educational, and academic context. In this work, we aim to develop
automatic systems to identify machine-generated text and to detect potential
misuse. We first introduce a large-scale benchmark M4, which is
multi-generator, multi-domain, and multi-lingual corpus for machine-generated
text detection. Using the dataset, we experiment with a number of methods and
we show that it is challenging for detectors to generalize well on unseen
examples if they are either from different domains or are generated by
different large language models. In such cases, detectors tend to misclassify
machine-generated text as human-written. These results show that the problem is
far from solved and there is a lot of room for improvement. We believe that our
dataset M4, which covers different generators, domains and languages, will
enable future research towards more robust approaches for this pressing
societal problem. The M4 dataset is available at
https://github.com/mbzuai-nlp/M4.
- Abstract(参考訳): 大規模言語モデル (LLM) は, 多様なユーザクエリに対して流動的な応答を生成できることが顕著に示されているが, ジャーナリズム, 教育, 学術的文脈におけるそのようなテキストの誤用が懸念されている。
本研究では,機械生成テキストを識別し,誤用を検知する自動システムを開発することを目的としている。
まず,マシン生成テキスト検出のためのマルチジェネレータ,マルチドメイン,多言語コーパスである大規模ベンチマークm4を紹介する。
データセットを用いて,様々な手法を実験し,異なる領域や異なる大規模言語モデルによって生成された場合,検出者が未知の例をうまく一般化することは困難であることを示す。
このような場合、検出器は機械が生成したテキストを人間書きと誤分類する傾向がある。
これらの結果から,解決には程遠い問題であり,改善の余地がたくさんあることが示唆された。
我々は、異なるジェネレータ、ドメイン、言語をカバーするデータセットM4が、この押し付け社会問題に対するより堅牢なアプローチに向けた将来の研究を可能にすると信じている。
m4データセットはhttps://github.com/mbzuai-nlp/m4で利用可能である。
関連論文リスト
- RKadiyala at SemEval-2024 Task 8: Black-Box Word-Level Text Boundary Detection in Partially Machine Generated Texts [0.0]
本稿では,与えられたテキストのどの部分が単語レベルで生成されたかを特定するための信頼性の高いアプローチをいくつか紹介する。
本稿では,プロプライエタリシステムとの比較,未確認領域におけるモデルの性能,ジェネレータのテキストの比較を行う。
その結果,検出能の他の側面との比較とともに,検出精度が著しく向上した。
論文 参考訳(メタデータ) (2024-10-22T03:21:59Z) - AMPLE: Emotion-Aware Multimodal Fusion Prompt Learning for Fake News Detection [0.1499944454332829]
本稿では,Emotion-textbfAware textbfMultimodal Fusion textbfPrompt textbfLtextbfEarning (textbfAMPLE) フレームワークについて述べる。
このフレームワークは感情分析ツールを利用してテキストから感情要素を抽出する。
次に、マルチヘッドクロスアテンション(MCA)機構と類似性を考慮した融合手法を用いて、マルチモーダルデータを統合する。
論文 参考訳(メタデータ) (2024-10-21T02:19:24Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - LLM-DetectAIve: a Tool for Fine-Grained Machine-Generated Text Detection [87.43727192273772]
テキストが人間の書いたものなのか、機械で作られたものなのかを判断するのは、しばしば困難である。
細粒度検出のためのLLM-DetectAIveを提案する。
i) 人書き、ii) 機械生成、(iii) 機械書、次いで機械書、(iv) 人書き、そして機械ポリッシュの4つのカテゴリをサポートする。
論文 参考訳(メタデータ) (2024-08-08T07:43:17Z) - SMLT-MUGC: Small, Medium, and Large Texts -- Machine versus User-Generated Content Detection and Comparison [2.7147912878168303]
我々は,(1)小規模(選挙,FIFA,ゲーム・オブ・スローンズからのツイート),(2)媒体(Wikipedia導入,PubMed要約),(3)大規模(OpenAI Webテキストデータセット)の4つのデータセットにおける機械学習アルゴリズムの性能を比較した。
その結果,非常に大きなパラメータを持つLCM(例えば1542万パラメータを持つGPT2のXL-1542変種など)は,従来の機械学習手法による検出が困難であることが示唆された。
言語学,人格,感情,偏見,道徳など,多次元にわたる人文・機械文の特徴について検討する。
論文 参考訳(メタデータ) (2024-06-28T22:19:01Z) - M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection [69.41274756177336]
大規模言語モデル (LLMs) は様々なチャネルにまたがる機械生成テキスト (MGT) を前例のない急激な増加をもたらした。
このことは、その潜在的な誤用と社会的意味に関する正当な懸念を提起する。
本稿では,MGT-M4GT-Benchの多言語,マルチドメイン,マルチジェネレータコーパスに基づく新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2024-02-17T02:50:33Z) - Multiscale Positive-Unlabeled Detection of AI-Generated Texts [27.956604193427772]
短文検出の難しさに対処するため,MPUトレーニングフレームワークを提案する。
MPU法は、長いAI生成テキストの検出性能を向上し、言語モデル検出器の短文検出を大幅に改善する。
論文 参考訳(メタデータ) (2023-05-29T15:25:00Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。