Tricking LLMs into Disobedience: Formalizing, Analyzing, and Detecting Jailbreaks
- URL: http://arxiv.org/abs/2305.14965v4
- Date: Wed, 27 Mar 2024 04:38:44 GMT
- Title: Tricking LLMs into Disobedience: Formalizing, Analyzing, and Detecting Jailbreaks
- Authors: Abhinav Rao, Sachin Vashistha, Atharva Naik, Somak Aditya, Monojit Choudhury,
- Abstract summary: We propose a formalism and a taxonomy of known (and possible) jailbreaks.
We release a dataset of model outputs across 3700 jailbreak prompts over 4 tasks.
- Score: 12.540530764250812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent explorations with commercial Large Language Models (LLMs) have shown that non-expert users can jailbreak LLMs by simply manipulating their prompts; resulting in degenerate output behavior, privacy and security breaches, offensive outputs, and violations of content regulator policies. Limited studies have been conducted to formalize and analyze these attacks and their mitigations. We bridge this gap by proposing a formalism and a taxonomy of known (and possible) jailbreaks. We survey existing jailbreak methods and their effectiveness on open-source and commercial LLMs (such as GPT-based models, OPT, BLOOM, and FLAN-T5-XXL). We further discuss the challenges of jailbreak detection in terms of their effectiveness against known attacks. For further analysis, we release a dataset of model outputs across 3700 jailbreak prompts over 4 tasks.
Related papers
- Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction [32.04296423547049]
Large Language Models (LLMs) are widely applied in various domains.
We propose the Rewrite to Jailbreak (R2J) approach, a transferable black-box jailbreak method to attack LLMs.
arXiv Detail & Related papers (2025-02-16T11:43:39Z) - JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation [22.75124155879712]
Large language models (LLMs) remain vulnerable to jailbreak attacks.
We propose a comprehensive jailbreak defense framework, JBShield, consisting of two key components: jailbreak detection JBShield-D and mitigation JBShield-M.
arXiv Detail & Related papers (2025-02-11T13:50:50Z) - SQL Injection Jailbreak: A Structural Disaster of Large Language Models [71.55108680517422]
We introduce a novel jailbreak method, which targets the external properties of LLMs.
By injecting jailbreak information into user prompts, SIJ successfully induces the model to output harmful content.
We propose a simple defense method called Self-Reminder-Key to counter SIJ.
arXiv Detail & Related papers (2024-11-03T13:36:34Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks.
Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40%.
arXiv Detail & Related papers (2024-06-28T11:35:54Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against Large Language Models (LLMs)
It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator.
Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks.
arXiv Detail & Related papers (2024-03-18T18:39:53Z) - Pandora: Jailbreak GPTs by Retrieval Augmented Generation Poisoning [19.45092401994873]
This study investigates indirect jailbreak attacks on Large Language Models(LLMs)
We introduce a novel attack vector named Retrieval Augmented Generation Poisoning.
Pandora exploits the synergy between LLMs and RAG through prompt manipulation to generate unexpected responses.
arXiv Detail & Related papers (2024-02-13T12:40:39Z) - Tree of Attacks: Jailbreaking Black-Box LLMs Automatically [34.36053833900958]
We present Tree of Attacks with Pruning (TAP), an automated method for generating jailbreaks.
TAP generates prompts that jailbreak state-of-the-art LLMs for more than 80% of the prompts.
TAP is also capable of jailbreaking LLMs protected by state-of-the-art guardrails, e.g., LlamaGuard.
arXiv Detail & Related papers (2023-12-04T18:49:23Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
Large language models (LLMs) are vulnerable to adversarial jailbreaks.
We propose an algorithm that generates semantic jailbreaks with only black-box access to an LLM.
arXiv Detail & Related papers (2023-10-12T15:38:28Z) - "Do Anything Now": Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models [50.22128133926407]
We conduct a comprehensive analysis of 1,405 jailbreak prompts spanning from December 2022 to December 2023.
We identify 131 jailbreak communities and discover unique characteristics of jailbreak prompts and their major attack strategies.
We identify five highly effective jailbreak prompts that achieve 0.95 attack success rates on ChatGPT (GPT-3.5) and GPT-4.
arXiv Detail & Related papers (2023-08-07T16:55:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.