OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning
- URL: http://arxiv.org/abs/2305.14973v2
- Date: Thu, 14 Dec 2023 16:17:20 GMT
- Title: OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning
- Authors: Jiazheng Li, Runcong Zhao, Yongxin Yang, Yulan He, Lin Gui
- Abstract summary: We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
- Score: 49.38867353135258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The remarkable performance of pre-trained large language models has
revolutionised various natural language processing applications. Due to huge
parametersizes and extensive running costs, companies or organisations tend to
transfer the models to the target task by zero-shot prompting techniques.
However, the prohibitive costs of tokens and time have hindered their adoption
in applications. We propose OverPrompt, leveraging the in-context learning
capability of LLMs to handle multiple task inputs, thereby reducing token and
time costs. This approach could potentially improve task performance during API
queries due to better conditional distribution mapping. Evaluated across
diverse classification datasets, our experiments show that OverPrompt can
achieve cost-efficient zero-shot classification without causing significant
detriment to task performance, and in some cases, even improving it. An
ablation study conducted on various LLMs, along with an investigation into the
robustness of our prompting strategy to different input ordering, offers
valuable insights into the broader applicability of our method across diverse
tasks. These findings also suggest a more seamless integration of our method
with LLMs through an API.
Related papers
- QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Token-Efficient Leverage Learning in Large Language Models [13.830828529873056]
Large Language Models (LLMs) have excelled in various tasks but perform better in high-resource scenarios.
Data scarcity and the inherent difficulty of adapting LLMs to specific tasks compound the challenge.
We present a streamlined implement of this methodology called Token-Efficient Leverage Learning (TELL)
arXiv Detail & Related papers (2024-04-01T04:39:44Z) - A Practical Survey on Zero-shot Prompt Design for In-context Learning [0.0]
Large language models (LLMs) have brought about significant improvements in Natural Language Processing(NLP) tasks.
This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts.
We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods.
arXiv Detail & Related papers (2023-09-22T23:00:34Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - Making Pre-trained Language Models End-to-end Few-shot Learners with
Contrastive Prompt Tuning [41.15017636192417]
We present CP-Tuning, the first end-to-end Contrastive Prompt Tuning framework for fine-tuning Language Models.
It is integrated with the task-invariant continuous prompt encoding technique with fully trainable prompt parameters.
Experiments over a variety of language understanding tasks used in IR systems and different PLMs show that CP-Tuning outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-04-01T02:24:24Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
This paper proposes Comprehensive Instruction (CINS) that exploits PLMs with task-specific instructions.
We design a schema (definition, constraint, prompt) of instructions and their customized realizations for three important downstream tasks in ToD.
Experiments are conducted on these ToD tasks in realistic few-shot learning scenarios with small validation data.
arXiv Detail & Related papers (2021-09-10T03:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.