QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2408.10504v1
- Date: Tue, 20 Aug 2024 03:06:48 GMT
- Title: QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning
- Authors: Yilun Kong, Hangyu Mao, Qi Zhao, Bin Zhang, Jingqing Ruan, Li Shen, Yongzhe Chang, Xueqian Wang, Rui Zhao, Dacheng Tao,
- Abstract summary: We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
- Score: 58.767866109043055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt engineering has demonstrated remarkable success in enhancing the performance of large language models (LLMs) across diverse tasks. However, most existing prompt optimization methods only focus on the task-level performance, overlooking the importance of query-preferred prompts, which leads to suboptimal performances. Additionally, these methods rely heavily on frequent interactions with LLMs to obtain feedback for guiding the optimization process, incurring substantial redundant interaction costs. In this paper, we introduce Query-dependent Prompt Optimization (QPO), which leverages multi-loop offline reinforcement learning to iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries, thus significantly improving the prompting effect on the large target LLM. We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks, thereby circumventing the expenses of online interactions. Furthermore, we continuously augment the offline dataset with the generated prompts in each loop, as the prompts from the fine-tuned model are supposed to outperform the source prompts in the original dataset. These iterative loops bootstrap the model towards generating optimal prompts. Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
Related papers
- Self-Supervised Prompt Optimization [16.06653117043314]
Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities.
Existing prompt optimization methods rely heavily on external references such as ground truth or by humans.
We propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks.
arXiv Detail & Related papers (2025-02-07T17:45:16Z) - GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers [52.17222304851524]
We introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning.
By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models.
GReaTer consistently outperforms previous state-of-the-art prompt optimization methods.
arXiv Detail & Related papers (2024-12-12T20:59:43Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling [20.0605311279483]
We introduce PRompt Optimization in Multi-Step Tasks (PROMST)
It incorporates human-designed feedback rules to automatically offer direct suggestions for improvement.
It significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks.
arXiv Detail & Related papers (2024-02-13T16:38:01Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.