MuLER: Detailed and Scalable Reference-based Evaluation
- URL: http://arxiv.org/abs/2305.14991v2
- Date: Wed, 29 Nov 2023 10:47:58 GMT
- Title: MuLER: Detailed and Scalable Reference-based Evaluation
- Authors: Taelin Karidi, Leshem Choshen, Gal Patel, Omri Abend
- Abstract summary: We propose a novel methodology that transforms any reference-based evaluation metric for text generation into a fine-grained analysis tool.
Given a system and a metric, MuLER quantifies how much the chosen metric penalizes specific error types.
We perform experiments in both synthetic and naturalistic settings to support MuLER's validity and showcase its usability.
- Score: 24.80921931416632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel methodology (namely, MuLER) that transforms any
reference-based evaluation metric for text generation, such as machine
translation (MT) into a fine-grained analysis tool. Given a system and a
metric, MuLER quantifies how much the chosen metric penalizes specific error
types (e.g., errors in translating names of locations). MuLER thus enables a
detailed error analysis which can lead to targeted improvement efforts for
specific phenomena. We perform experiments in both synthetic and naturalistic
settings to support MuLER's validity and showcase its usability in MT
evaluation, and other tasks, such as summarization. Analyzing all submissions
to WMT in 2014-2020, we find consistent trends. For example, nouns and verbs
are among the most frequent POS tags. However, they are among the hardest to
translate. Performance on most POS tags improves with overall system
performance, but a few are not thus correlated (their identity changes from
language to language). Preliminary experiments with summarization reveal
similar trends.
Related papers
- Machine Translation Meta Evaluation through Translation Accuracy
Challenge Sets [92.38654521870444]
We introduce ACES, a contrastive challenge set spanning 146 language pairs.
This dataset aims to discover whether metrics can identify 68 translation accuracy errors.
We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks.
arXiv Detail & Related papers (2024-01-29T17:17:42Z) - BLEURT Has Universal Translations: An Analysis of Automatic Metrics by
Minimum Risk Training [64.37683359609308]
In this study, we analyze various mainstream and cutting-edge automatic metrics from the perspective of their guidance for training machine translation systems.
We find that certain metrics exhibit robustness defects, such as the presence of universal adversarial translations in BLEURT and BARTScore.
In-depth analysis suggests two main causes of these robustness deficits: distribution biases in the training datasets, and the tendency of the metric paradigm.
arXiv Detail & Related papers (2023-07-06T16:59:30Z) - A Survey on Zero Pronoun Translation [69.09774294082965]
Zero pronouns (ZPs) are frequently omitted in pro-drop languages, but should be recalled in non-pro-drop languages.
This survey paper highlights the major works that have been undertaken in zero pronoun translation (ZPT) after the neural revolution.
We uncover a number of insightful findings such as: 1) ZPT is in line with the development trend of large language model; 2) data limitation causes learning bias in languages and domains; 3) performance improvements are often reported on single benchmarks, but advanced methods are still far from real-world use.
arXiv Detail & Related papers (2023-05-17T13:19:01Z) - Extrinsic Evaluation of Machine Translation Metrics [78.75776477562087]
It is unclear if automatic metrics are reliable at distinguishing good translations from bad translations at the sentence level.
We evaluate the segment-level performance of the most widely used MT metrics (chrF, COMET, BERTScore, etc.) on three downstream cross-lingual tasks.
Our experiments demonstrate that all metrics exhibit negligible correlation with the extrinsic evaluation of the downstream outcomes.
arXiv Detail & Related papers (2022-12-20T14:39:58Z) - DEMETR: Diagnosing Evaluation Metrics for Translation [21.25704103403547]
We release DEMETR, a diagnostic dataset with 31K English examples.
We find that learned metrics perform substantially better than string-based metrics on DEMETR.
arXiv Detail & Related papers (2022-10-25T03:25:44Z) - SMART: Sentences as Basic Units for Text Evaluation [48.5999587529085]
In this paper, we introduce a new metric called SMART to mitigate such limitations.
We treat sentences as basic units of matching instead of tokens, and use a sentence matching function to soft-match candidate and reference sentences.
Our results show that system-level correlations of our proposed metric with a model-based matching function outperforms all competing metrics.
arXiv Detail & Related papers (2022-08-01T17:58:05Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
proper handling of discourse significantly contributes to the quality of machine translation (MT)
Recent works in context-aware MT attempt to target a small set of discourse phenomena during evaluation.
We develop the Multilingual Discourse-Aware benchmark, a series of taggers that identify and evaluate model performance on discourse phenomena.
arXiv Detail & Related papers (2021-09-15T17:29:30Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
A few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation.
This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them.
In this paper, we urge the community for more careful consideration of how they automatically evaluate their models.
arXiv Detail & Related papers (2020-10-26T13:57:20Z) - Can Your Context-Aware MT System Pass the DiP Benchmark Tests? :
Evaluation Benchmarks for Discourse Phenomena in Machine Translation [7.993547048820065]
We introduce the first of their kind MT benchmark datasets that aim to track and hail improvements across four main discourse phenomena.
Surprisingly, we find that existing context-aware models do not improve discourse-related translations consistently across languages and phenomena.
arXiv Detail & Related papers (2020-04-30T07:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.