A Human-in-the-Loop Approach for Information Extraction from Privacy
Policies under Data Scarcity
- URL: http://arxiv.org/abs/2305.15006v2
- Date: Wed, 31 May 2023 09:58:15 GMT
- Title: A Human-in-the-Loop Approach for Information Extraction from Privacy
Policies under Data Scarcity
- Authors: Michael Gebauer, Faraz Maschhur, Nicola Leschke, Elias Gr\"unewald,
Frank Pallas
- Abstract summary: We present a prototype system for a Human-in-the-Loop' approach to privacy policy annotation.
We propose an ML-based suggestion system specifically tailored to the constraint of data scarcity prevalent in the domain of privacy policy annotation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-readable representations of privacy policies are door openers for a
broad variety of novel privacy-enhancing and, in particular,
transparency-enhancing technologies (TETs). In order to generate such
representations, transparency information needs to be extracted from written
privacy policies. However, respective manual annotation and extraction
processes are laborious and require expert knowledge. Approaches for fully
automated annotation, in turn, have so far not succeeded due to overly high
error rates in the specific domain of privacy policies. In the end, a lack of
properly annotated privacy policies and respective machine-readable
representations persists and enduringly hinders the development and
establishment of novel technical approaches fostering policy perception and
data subject informedness.
In this work, we present a prototype system for a `Human-in-the-Loop'
approach to privacy policy annotation that integrates ML-generated suggestions
and ultimately human annotation decisions. We propose an ML-based suggestion
system specifically tailored to the constraint of data scarcity prevalent in
the domain of privacy policy annotation. On this basis, we provide meaningful
predictions to users thereby streamlining the annotation process. Additionally,
we also evaluate our approach through a prototypical implementation to show
that our ML-based extraction approach provides superior performance over other
recently used extraction models for legal documents.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
Security measures such as anonymization are needed to protect individuals' privacy.
Within our study, we conducted expert interviews to gain insights into practices in the field.
We survey privacy-enhancing methods in use, which generally do not comply with state-of-the-art standards of differential privacy.
arXiv Detail & Related papers (2024-07-04T08:29:27Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
This paper examines the evolving landscape of machine learning (ML) and its profound impact across various sectors.
It focuses on the emerging field of Privacy-preserving Machine Learning (PPML)
As ML applications become increasingly integral to industries like telecommunications, financial technology, and surveillance, they raise significant privacy concerns.
arXiv Detail & Related papers (2024-02-25T17:31:06Z) - Privacy-Preserving Language Model Inference with Instance Obfuscation [33.86459812694288]
Language Models as a Service (LM) offers convenient access for developers and researchers to perform inference using pre-trained language models.
The input data and the inference results containing private information are exposed as plaintext during the service call, leading to privacy issues.
We propose Instance-Obfuscated Inference (IOI) method, which focuses on addressing the decision privacy issue of natural language understanding tasks.
arXiv Detail & Related papers (2024-02-13T05:36:54Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Privacy-Preserving Matrix Factorization for Recommendation Systems using
Gaussian Mechanism [2.84279467589473]
We propose a privacy-preserving recommendation system based on the differential privacy framework and matrix factorization.
As differential privacy is a powerful and robust mathematical framework for designing privacy-preserving machine learning algorithms, it is possible to prevent adversaries from extracting sensitive user information.
arXiv Detail & Related papers (2023-04-11T13:50:39Z) - How to keep text private? A systematic review of deep learning methods
for privacy-preserving natural language processing [0.38073142980732994]
Article systematically reviews over sixty methods for privacy-preserving NLP published between 2016 and 2020.
We introduce a novel taxonomy for classifying the existing methods into three categories: methods trusted methods verification methods.
We discuss open challenges in privacy-preserving NLP regarding data traceability, overhead dataset size and the prevalence of human biases in embeddings.
arXiv Detail & Related papers (2022-05-20T11:29:44Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions.
We solve this problem by introducing a regularizer based on the mutual information between the sensitive state and the actions.
We develop a model-based estimator for optimization of privacy-constrained policies.
arXiv Detail & Related papers (2020-12-30T03:22:35Z) - Beyond The Text: Analysis of Privacy Statements through Syntactic and
Semantic Role Labeling [12.74252812104216]
This paper formulates a new task of extracting privacy parameters from a privacy policy, through the lens of Contextual Integrity.
We show that traditional NLP tasks, including the recently proposed Question-Answering based solutions, are insufficient to address the privacy parameter extraction problem.
arXiv Detail & Related papers (2020-10-01T20:48:37Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.