論文の概要: Iteratively Improving Speech Recognition and Voice Conversion
- arxiv url: http://arxiv.org/abs/2305.15055v1
- Date: Wed, 24 May 2023 11:45:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 16:27:30.957045
- Title: Iteratively Improving Speech Recognition and Voice Conversion
- Title(参考訳): 音声認識と音声変換の反復的改善
- Authors: Mayank Kumar Singh, Naoya Takahashi, Onoe Naoyuki
- Abstract要約: 本稿ではまず,VCモデルのトレーニング中にコンテンツ保存を確保するために使用されるASRモデルをトレーニングする。
次のイテレーションでは、データ拡張手法としてVCモデルを使用し、ASRモデルをさらに微調整し、多様な話者に一般化する。
改良されたASRモデルをVCモデルと逆転モデルの訓練に反復的に活用することにより、両モデルの改善を実験的に示す。
- 参考スコア(独自算出の注目度): 10.514009693947227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many existing works on voice conversion (VC) tasks use automatic speech
recognition (ASR) models for ensuring linguistic consistency between source and
converted samples. However, for the low-data resource domains, training a
high-quality ASR remains to be a challenging task. In this work, we propose a
novel iterative way of improving both the ASR and VC models. We first train an
ASR model which is used to ensure content preservation while training a VC
model. In the next iteration, the VC model is used as a data augmentation
method to further fine-tune the ASR model and generalize it to diverse
speakers. By iteratively leveraging the improved ASR model to train VC model
and vice-versa, we experimentally show improvement in both the models. Our
proposed framework outperforms the ASR and one-shot VC baseline models on
English singing and Hindi speech domains in subjective and objective
evaluations in low-data resource settings.
- Abstract(参考訳): 音声変換(VC)タスクに関する多くの既存の研究は、ソースと変換されたサンプル間の言語的一貫性を確保するために自動音声認識(ASR)モデルを使用している。
しかし、低データリソース領域では、高品質のASRをトレーニングすることは難しい課題である。
本研究では,ASRモデルとVCモデルの両方を改善する新しい反復的手法を提案する。
本稿ではまず,VCモデルのトレーニング中にコンテンツ保存を確保するために使用されるASRモデルをトレーニングする。
次のイテレーションでは、データ拡張手法としてVCモデルを使用し、ASRモデルをさらに微調整し、多様な話者に一般化する。
改良されたASRモデルを用いてVCモデルを訓練し,両モデルの改善を実験的に示す。
提案フレームワークは,低データ環境における主観的および客観的評価において,英語歌唱およびヒンズー語音声領域におけるasrおよびone-shot vcのベースラインモデルを上回る。
関連論文リスト
- Unified Speech Recognition: A Single Model for Auditory, Visual, and Audiovisual Inputs [73.74375912785689]
本稿では,音声認識システムのための統合学習戦略を提案する。
3つのタスクの1つのモデルをトレーニングすることで、VSRとAVSRの性能が向上することを示す。
また,非ラベル標本をより効果的に活用するために,強欲な擬似ラベリング手法を導入する。
論文 参考訳(メタデータ) (2024-11-04T16:46:53Z) - Takin-VC: Zero-shot Voice Conversion via Jointly Hybrid Content and Memory-Augmented Context-Aware Timbre Modeling [14.98368067290024]
Takin-VCは、新しいゼロショットVCフレームワークである。
実験結果から,Takin-VC法は最先端のゼロショットVCシステムを上回ることがわかった。
論文 参考訳(メタデータ) (2024-10-02T09:07:33Z) - VHASR: A Multimodal Speech Recognition System With Vision Hotwords [74.94430247036945]
VHASRは、視覚をホットワードとして使用し、モデルの音声認識能力を強化するマルチモーダル音声認識システムである。
VHASRは、画像のキー情報を効果的に利用して、モデルの音声認識能力を高めることができる。
論文 参考訳(メタデータ) (2024-10-01T16:06:02Z) - SPA-SVC: Self-supervised Pitch Augmentation for Singing Voice Conversion [12.454955437047573]
歌声変換(SPA-SVC)のための自己教師付きピッチ拡張法を提案する。
サイクルピッチシフトトレーニング戦略と構造類似度指数(SSIM)の損失をSVCモデルに導入し,その性能を効果的に向上する。
歌唱データセットM4Singerの実験結果から,提案手法はモデル性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-06-09T08:34:01Z) - Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
本稿では,複数の改良を加えた多言語音声認識モデルを提案する。
我々は、6つの異なる言語に対する音声視覚訓練データの量を増やし、重複しない多言語データセットの自動書き起こしを生成する。
提案モデルでは, LRS3データセット上での新たな最先端性能を実現し, WERは0.8%に達した。
論文 参考訳(メタデータ) (2024-03-14T01:16:32Z) - AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot
AV-ASR [79.21857972093332]
本稿では,視覚情報を用いた音声のみのモデル拡張手法であるAVFormerについて述べる。
最小限のトレーニング時間とパラメータで、弱ラベル付き動画データを少量でトレーニングできることが示される。
また、トレーニング中に簡単なカリキュラム方式を導入し、モデルが音声と視覚情報を効果的に処理できることを示します。
論文 参考訳(メタデータ) (2023-03-29T07:24:28Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
言語間音声認識のためのニューラルモデル再プログラミングに基づく新しいパラメータ効率学習フレームワークを提案する。
我々は、学習可能な事前学習機能強化に焦点を当てた、異なる補助的ニューラルネットワークアーキテクチャを設計する。
提案手法は,既存のASRチューニングアーキテクチャとその拡張性能を自己監督的損失で向上させる。
論文 参考訳(メタデータ) (2023-01-19T02:37:56Z) - Non-Parallel Voice Conversion for ASR Augmentation [23.95732033698818]
音声変換は、ASR性能を改善するためのデータ拡張手法として使用できる。
多くの話者を含むにもかかわらず、話者の多様性はASRの品質に制限される可能性がある。
論文 参考訳(メタデータ) (2022-09-15T00:40:35Z) - An Adaptive Learning based Generative Adversarial Network for One-To-One
Voice Conversion [9.703390665821463]
本稿では,効率の良い1対1話者VCのための適応学習型GANモデルであるALGAN-VCを提案する。
このモデルは、Voice Conversion Challenge (VCC) 2016、2018、2020データセット、および自己準備のスピーチデータセットでテストされています。
生成音声サンプルの主観的および客観的評価は,提案モデルが音声変換タスクをエレガントに実行していることを示した。
論文 参考訳(メタデータ) (2021-04-25T13:44:32Z) - Pretraining Techniques for Sequence-to-Sequence Voice Conversion [57.65753150356411]
シークエンス・トゥ・シークエンス(seq2seq)音声変換(VC)モデルは、韻律を変換する能力によって魅力的である。
我々は,大規模コーパスが容易に利用できる他の音声処理タスク(通常,テキスト音声(TTS)と自動音声認識(ASR))から知識を伝達することを提案する。
このような事前訓練されたASRまたはTSモデルパラメータを持つVCモデルは、高忠実で高知能な変換可能な音声に対して効果的な隠れ表現を生成することができると論じる。
論文 参考訳(メタデータ) (2020-08-07T11:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。