Referral Augmentation for Zero-Shot Information Retrieval
- URL: http://arxiv.org/abs/2305.15098v1
- Date: Wed, 24 May 2023 12:28:35 GMT
- Title: Referral Augmentation for Zero-Shot Information Retrieval
- Authors: Michael Tang, Shunyu Yao, John Yang, Karthik Narasimhan
- Abstract summary: Referral-Augmented Retrieval (RAR) is a simple technique that links document indices with referrals.
RAR works with both sparse and dense retrievers, and outperforms generative text expansion techniques.
We analyze different methods for multi-referral aggregation and show that enables up-to-date information retrieval without re-training.
- Score: 30.811093210831018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Referral-Augmented Retrieval (RAR), a simple technique that
concatenates document indices with referrals, i.e. text from other documents
that cite or link to the given document, to provide significant performance
gains for zero-shot information retrieval. The key insight behind our method is
that referrals provide a more complete, multi-view representation of a
document, much like incoming page links in algorithms like PageRank provide a
comprehensive idea of a webpage's importance. RAR works with both sparse and
dense retrievers, and outperforms generative text expansion techniques such as
DocT5Query and Query2Doc a 37% and 21% absolute improvement on ACL paper
retrieval Recall@10 -- while also eliminating expensive model training and
inference. We also analyze different methods for multi-referral aggregation and
show that RAR enables up-to-date information retrieval without re-training.
Related papers
- DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAG has recently demonstrated the performance of Large Language Models (LLMs) in the knowledge-intensive tasks such as Question-Answering (QA)
We have found that even though there is low relevance between some critical documents and query, it is possible to retrieve the remaining documents by combining parts of the documents with the query.
A two-stage retrieval framework called Dynamic-Relevant Retrieval-Augmented Generation (DR-RAG) is proposed to improve document retrieval recall and the accuracy of answers.
arXiv Detail & Related papers (2024-06-11T15:15:33Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language models (LLMs) leverage relevant content retrieved by information retrieval systems to generate correct responses.
Existing retriever-responder methods typically append relevant documents to the prompt of LLMs to perform text generation tasks.
We propose a new pipeline named "Reinforced Retriever-Reorder-Responder" to learn document orderings for retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-05-04T12:59:10Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain
Question Answering [122.62012375722124]
In existing methods, large language models (LLMs) cannot precisely assess the relevance of retrieved documents.
We propose REAR, a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
arXiv Detail & Related papers (2024-02-27T13:22:51Z) - GAR-meets-RAG Paradigm for Zero-Shot Information Retrieval [16.369071865207808]
We propose a novel GAR-meets-RAG recurrence formulation that overcomes the challenges of existing paradigms.
A key design principle is that the rewrite-retrieval stages improve the recall of the system and a final re-ranking stage improves the precision.
Our method establishes a new state-of-the-art in the BEIR benchmark, outperforming previous best results in Recall@100 and nDCG@10 metrics on 6 out of 8 datasets.
arXiv Detail & Related papers (2023-10-31T03:52:08Z) - Query2doc: Query Expansion with Large Language Models [69.9707552694766]
The proposed method first generates pseudo- documents by few-shot prompting large language models (LLMs)
query2doc boosts the performance of BM25 by 3% to 15% on ad-hoc IR datasets.
Our method also benefits state-of-the-art dense retrievers in terms of both in-domain and out-of-domain results.
arXiv Detail & Related papers (2023-03-14T07:27:30Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
We propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query.
Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
arXiv Detail & Related papers (2022-12-18T15:57:46Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - Learning Diverse Document Representations with Deep Query Interactions
for Dense Retrieval [79.37614949970013]
We propose a new dense retrieval model which learns diverse document representations with deep query interactions.
Our model encodes each document with a set of generated pseudo-queries to get query-informed, multi-view document representations.
arXiv Detail & Related papers (2022-08-08T16:00:55Z) - Augmenting Document Representations for Dense Retrieval with
Interpolation and Perturbation [49.940525611640346]
Document Augmentation for dense Retrieval (DAR) framework augments the representations of documents with their Dense Augmentation and perturbations.
We validate the performance of DAR on retrieval tasks with two benchmark datasets, showing that the proposed DAR significantly outperforms relevant baselines on the dense retrieval of both the labeled and unlabeled documents.
arXiv Detail & Related papers (2022-03-15T09:07:38Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
We present a framework for improving the performance of a wide class of retrieval models at minimal computational cost.
It utilizes precomputed document representations extracted by a base dense retrieval method.
It incurs a negligible computational overhead on top of any first-stage method at run time, allowing it to be easily combined with any state-of-the-art dense retrieval method.
arXiv Detail & Related papers (2021-12-16T10:25:26Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval.
ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels.
Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
arXiv Detail & Related papers (2021-08-30T18:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.