DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering
- URL: http://arxiv.org/abs/2406.07348v3
- Date: Sun, 16 Jun 2024 04:33:17 GMT
- Title: DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering
- Authors: Zijian Hei, Weiling Liu, Wenjie Ou, Juyi Qiao, Junming Jiao, Guowen Song, Ting Tian, Yi Lin,
- Abstract summary: RAG has recently demonstrated the performance of Large Language Models (LLMs) in the knowledge-intensive tasks such as Question-Answering (QA)
We have found that even though there is low relevance between some critical documents and query, it is possible to retrieve the remaining documents by combining parts of the documents with the query.
A two-stage retrieval framework called Dynamic-Relevant Retrieval-Augmented Generation (DR-RAG) is proposed to improve document retrieval recall and the accuracy of answers.
- Score: 4.364937306005719
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) has recently demonstrated the performance of Large Language Models (LLMs) in the knowledge-intensive tasks such as Question-Answering (QA). RAG expands the query context by incorporating external knowledge bases to enhance the response accuracy. However, it would be inefficient to access LLMs multiple times for each query and unreliable to retrieve all the relevant documents by a single query. We have found that even though there is low relevance between some critical documents and query, it is possible to retrieve the remaining documents by combining parts of the documents with the query. To mine the relevance, a two-stage retrieval framework called Dynamic-Relevant Retrieval-Augmented Generation (DR-RAG) is proposed to improve document retrieval recall and the accuracy of answers while maintaining efficiency. Additionally, a compact classifier is applied to two different selection strategies to determine the contribution of the retrieved documents to answering the query and retrieve the relatively relevant documents. Meanwhile, DR-RAG call the LLMs only once, which significantly improves the efficiency of the experiment. The experimental results on multi-hop QA datasets show that DR-RAG can significantly improve the accuracy of the answers and achieve new progress in QA systems.
Related papers
- EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
We introduce EfficientRAG, an efficient retriever for multi-hop question answering.
Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
arXiv Detail & Related papers (2024-08-08T06:57:49Z) - Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
We focus on methods to reduce the size and improve the quality of the prompt context required for question-answering systems.
Our goal is to select the most semantically relevant documents, treating the discarded ones as outliers.
It was found that the greatest improvements were achieved with increasing complexity of the questions and answers.
arXiv Detail & Related papers (2024-07-01T15:53:29Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs)
Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents.
This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea.
arXiv Detail & Related papers (2024-06-07T16:59:38Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language models (LLMs) leverage relevant content retrieved by information retrieval systems to generate correct responses.
Existing retriever-responder methods typically append relevant documents to the prompt of LLMs to perform text generation tasks.
We propose a new pipeline named "Reinforced Retriever-Reorder-Responder" to learn document orderings for retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-05-04T12:59:10Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain
Question Answering [122.62012375722124]
In existing methods, large language models (LLMs) cannot precisely assess the relevance of retrieved documents.
We propose REAR, a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
arXiv Detail & Related papers (2024-02-27T13:22:51Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z) - Augmenting Document Representations for Dense Retrieval with
Interpolation and Perturbation [49.940525611640346]
Document Augmentation for dense Retrieval (DAR) framework augments the representations of documents with their Dense Augmentation and perturbations.
We validate the performance of DAR on retrieval tasks with two benchmark datasets, showing that the proposed DAR significantly outperforms relevant baselines on the dense retrieval of both the labeled and unlabeled documents.
arXiv Detail & Related papers (2022-03-15T09:07:38Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval.
ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels.
Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
arXiv Detail & Related papers (2021-08-30T18:10:26Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
Generation-Augmented Retrieval (GAR) for answering open-domain questions.
We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy.
GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader.
arXiv Detail & Related papers (2020-09-17T23:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.