論文の概要: Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction
- arxiv url: http://arxiv.org/abs/2305.15171v4
- Date: Mon, 15 Jul 2024 03:01:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 05:18:31.684279
- Title: Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction
- Title(参考訳): Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction
- Authors: Xinhang Liu, Jiaben Chen, Shiu-hong Kao, Yu-Wing Tai, Chi-Keung Tang,
- Abstract要約: 我々は,限られた入力画像のみを用いて,スパースビュー再構成を改善するために,Deceptive-NeRF/3DGSを導入した。
具体的には,少数視点再構成によるノイズ画像から高品質な擬似観測へ変換する,偽拡散モデルを提案する。
本システムでは,拡散生成擬似観測をトレーニング画像集合に徐々に組み込んで,スパース入力観測を5倍から10倍に高めている。
- 参考スコア(独自算出の注目度): 60.52716381465063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel view synthesis via Neural Radiance Fields (NeRFs) or 3D Gaussian Splatting (3DGS) typically necessitates dense observations with hundreds of input images to circumvent artifacts. We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images, by leveraging a diffusion model pre-trained from multiview datasets. Different from using diffusion priors to regularize representation optimization, our method directly uses diffusion-generated images to train NeRF/3DGS as if they were real input views. Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality photorealistic pseudo-observations. To resolve consistency among pseudo-observations and real input views, we develop an uncertainty measure to guide the diffusion model's generation. Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times. Extensive experiments across diverse and challenging datasets validate that our approach outperforms existing state-of-the-art methods and is capable of synthesizing novel views with super-resolution in the few-view setting.
- Abstract(参考訳): ニューラル・ラジアン・フィールド(Neural Radiance Fields, NeRFs)または3D Gaussian Splatting(3DGS)による新しいビュー合成は、アーティファクトを回避するために数百の入力画像による密集した観測を必要とする。
我々は,マルチビューデータセットから事前学習した拡散モデルを利用して,限られた入力画像のみを用いてスパースビュー再構成を改善するために,Deceptive-NeRF/3DGSを導入した。
表現最適化の正規化に拡散前処理を使うのとは違い,本手法では直接拡散生成画像を用いてNeRF/3DGSを実際の入力ビューのように訓練する。
具体的には,少数視点再構成によるノイズ画像から高品質なフォトリアリスティック擬似観測へ変換する,偽拡散モデルを提案する。
擬似観測と実際の入力ビューの整合性を解決するため,拡散モデルの生成を導く不確実性尺度を開発した。
本システムでは,拡散生成擬似観測をトレーニング画像集合に徐々に組み込んで,スパース入力観測を5倍から10倍に高めている。
多様な、挑戦的なデータセットにわたる大規模な実験は、我々のアプローチが既存の最先端の手法より優れており、少数の視点で新しいビューを超高解像度で合成できることを示す。
関連論文リスト
- SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior [53.52396082006044]
現在の手法では、トレーニングの観点から大きく逸脱する観点で、レンダリングの品質を維持するのに苦労しています。
この問題は、移動中の車両の固定カメラが捉えた、まばらなトレーニングビューに起因している。
そこで本研究では,拡散モデルを用いて3DGSのキャパシティを向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T09:20:29Z) - Text-Image Conditioned Diffusion for Consistent Text-to-3D Generation [28.079441901818296]
我々は,粒度の細かい視野の整合性を明示したNeRF(Neural Radiance Fields)のテキスト・ツー・3D手法を提案する。
本手法は,既存のテキスト・ツー・3D法に対して最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T01:09:49Z) - CAD: Photorealistic 3D Generation via Adversarial Distillation [28.07049413820128]
本稿では,事前学習した拡散モデルを用いた3次元合成のための新しい学習パラダイムを提案する。
提案手法は,1つの画像に条件付された高忠実かつ光リアルな3Dコンテンツの生成を解放し,プロンプトを行う。
論文 参考訳(メタデータ) (2023-12-11T18:59:58Z) - EpiDiff: Enhancing Multi-View Synthesis via Localized Epipolar-Constrained Diffusion [60.30030562932703]
EpiDiffは、局所的なインタラクティブなマルチビュー拡散モデルである。
16枚のマルチビュー画像をわずか12秒で生成する。
品質評価の指標では、以前の手法を上回ります。
論文 参考訳(メタデータ) (2023-12-11T05:20:52Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
スパースビュー入力に適した新しい3D再構成手法であるスパース3Dを提案する。
提案手法は,多視点拡散モデルから頑健な先行情報を抽出し,ニューラルラディアンス場を改良する。
強力な画像拡散モデルから2Dプリエントをタップすることで、我々の統合モデルは、常に高品質な結果をもたらす。
論文 参考訳(メタデータ) (2023-08-27T11:52:00Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D対応画像合成は、シーン生成や画像からの新規ビュー合成など、様々なタスクを含む。
本稿では,様々な物体の多視点画像から,ニューラルラディアンス場(NeRF)の一般化可能な事前学習を行うために,表現拡散モデルを用いた統一的アプローチであるSSDNeRFを提案する。
論文 参考訳(メタデータ) (2023-04-13T17:59:01Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
拡散モデルに対する近年の関心を踏まえて、生成的に事前学習された視覚表現を再考する。
拡散モデルによる直接事前学習では強い表現は得られないが、マスク付き入力上での拡散モデルと公式拡散モデルをマスク付きオートエンコーダ(DiffMAE)として条件付ける。
設計選択の長所と短所について包括的な研究を行い、拡散モデルとマスク付きオートエンコーダ間の接続を構築する。
論文 参考訳(メタデータ) (2023-04-06T17:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。