論文の概要: DiffBlender: Composable and Versatile Multimodal Text-to-Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2305.15194v3
- Date: Tue, 26 Aug 2025 04:40:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 17:42:38.383688
- Title: DiffBlender: Composable and Versatile Multimodal Text-to-Image Diffusion Models
- Title(参考訳): DiffBlender: 合成可能な多モードテキスト・画像拡散モデル
- Authors: Sungnyun Kim, Junsoo Lee, Kibeom Hong, Daesik Kim, Namhyuk Ahn,
- Abstract要約: 一つのアーキテクチャ内で3つのモードを全て処理できるマルチモーダルなT2I拡散モデルを提案する。
我々は、DiffBlenderが複数の情報ソースを効果的に統合し、詳細な画像合成における多様な応用を支援することを実証した。
- 参考スコア(独自算出の注目度): 20.281651578265624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we aim to enhance the capabilities of diffusion-based text-to-image (T2I) generation models by integrating diverse modalities beyond textual descriptions within a unified framework. To this end, we categorize widely used conditional inputs into three modality types: structure, layout, and attribute. We propose a multimodal T2I diffusion model, which is capable of processing all three modalities within a single architecture without modifying the parameters of the pre-trained diffusion model, as only a small subset of components is updated. Our approach sets new benchmarks in multimodal generation through extensive quantitative and qualitative comparisons with existing conditional generation methods. We demonstrate that DiffBlender effectively integrates multiple sources of information and supports diverse applications in detailed image synthesis. The code and demo are available at https://github.com/sungnyun/diffblender.
- Abstract(参考訳): 本研究では,拡散に基づくテキスト・ツー・イメージ(T2I)生成モデルの性能向上を目的とした。
この目的のために、我々は条件入力を3つのモードタイプ(構造、レイアウト、属性)に分類した。
本稿では, 事前学習した拡散モデルのパラメータを変更することなく, 単一アーキテクチャ内の3つのモードを全て処理できるマルチモーダルT2I拡散モデルを提案する。
提案手法は, 既存の条件生成手法との定量的, 質的な比較により, マルチモーダル生成における新しいベンチマークを設定する。
我々は、DiffBlenderが複数の情報ソースを効果的に統合し、詳細な画像合成における多様な応用を支援することを実証した。
コードとデモはhttps://github.com/sungnyun/diffblender.comで公開されている。
関連論文リスト
- Diffuse Everything: Multimodal Diffusion Models on Arbitrary State Spaces [10.85468238780625]
任意の状態空間上に多モード拡散モデルを構築するための新しいフレームワークを提案する。
各モードに対して革新的な分離ノイズスケジュールを導入することにより、単一モデル内で非条件とモード条件の両方を同時に生成することが可能となる。
論文 参考訳(メタデータ) (2025-06-09T16:20:20Z) - Unified Multimodal Discrete Diffusion [78.48930545306654]
複数のモードをまたいだ理解と生成が可能なマルチモーダル生成モデルは、自己回帰(AR)アプローチによって支配される。
共同テキストと画像領域の統一的な生成形式としての離散拡散モデルについて検討する。
テキストと画像の共同理解・生成が可能なUnified Multimodal Discrete Diffusion (UniDisc) モデルを提案する。
論文 参考訳(メタデータ) (2025-03-26T17:59:51Z) - TweedieMix: Improving Multi-Concept Fusion for Diffusion-based Image/Video Generation [67.97044071594257]
TweedieMixは、カスタマイズされた拡散モデルを構成する新しい方法である。
我々のフレームワークは、画像とビデオの拡散モデルに力ずくで拡張できる。
論文 参考訳(メタデータ) (2024-10-08T01:06:01Z) - Diffusion Models For Multi-Modal Generative Modeling [32.61765315067488]
本稿では,共通拡散空間における統一多モード拡散モデルを構築することにより,拡散モデルを定義するための原理的手法を提案する。
本稿では,画像遷移,マスクイメージトレーニング,共同画像ラベル,共同画像表現生成モデリングなどのフレームワークを検証するために,複数のマルチモーダル生成設定を提案する。
論文 参考訳(メタデータ) (2024-07-24T18:04:17Z) - MaxFusion: Plug&Play Multi-Modal Generation in Text-to-Image Diffusion Models [34.611309081801345]
大規模な拡散ベースのテキスト・ツー・イメージ(T2I)モデルでは、テキスト・ツー・イメージ生成に印象的な生成能力がある。
本稿では,最小限の計算量で新しいタスクにまたがって生成モデルを拡張するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-15T17:55:56Z) - Diffusion Cocktail: Mixing Domain-Specific Diffusion Models for Diversified Image Generations [7.604214200457584]
Diffusion Cocktail(ディフュージョン・コックテール、ディフュージョン・コックテール、Diffusion Cocktail、ディフュージョン・コックテール)は、複数の拡散モデル間でスタイルとコンテンツ情報を伝達する訓練のない方法である。
Ditailは生成プロセスのきめ細かい制御を提供し、スタイルやコンテンツの柔軟な操作を可能にする。
論文 参考訳(メタデータ) (2023-12-12T00:53:56Z) - Kandinsky: an Improved Text-to-Image Synthesis with Image Prior and
Latent Diffusion [50.59261592343479]
本稿では、潜伏拡散アーキテクチャの新しい探索であるKandinsky1を紹介する。
提案したモデルは、CLIPのイメージ埋め込みにテキスト埋め込みをマッピングするために別々に訓練されている。
また,テキスト・ツー・イメージ生成,画像融合,テキスト・画像融合,画像のバリエーション生成,テキスト・インペイント/アウトペイントなど,多様な生成モードをサポートするユーザフレンドリーなデモシステムも展開した。
論文 参考訳(メタデータ) (2023-10-05T12:29:41Z) - BLIP-Diffusion: Pre-trained Subject Representation for Controllable
Text-to-Image Generation and Editing [73.74570290836152]
BLIP-Diffusionはマルチモーダル制御をサポートする新しい主観駆動画像生成モデルである。
他の主観駆動生成モデルとは異なり、BLIP-Diffusionは主観表現を提供するために事前訓練された新しいマルチモーダルエンコーダを導入する。
論文 参考訳(メタデータ) (2023-05-24T04:51:04Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
本研究は,テキストから画像への拡散モデルにおいて,迅速な理解能力を高めることを提案する。
提案手法は,新たな2段階プロセスにおいて,事前訓練された大規模言語モデルを用いてグラウンドド生成を行う。
提案手法は,画像の正確な生成において,ベース拡散モデルといくつかの強いベースラインを著しく上回る。
論文 参考訳(メタデータ) (2023-05-23T03:59:06Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z) - Versatile Diffusion: Text, Images and Variations All in One Diffusion
Model [76.89932822375208]
Versatile Diffusionは、テキスト・ツー・イメージ、画像・ツー・テキスト、バリエーションの複数のフローを1つの統一モデルで処理する。
私たちのコードとモデルはhttps://github.com/SHI-Labs/Versatile-Diffusion.comでオープンソース化されています。
論文 参考訳(メタデータ) (2022-11-15T17:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。