GTNet: Graph Transformer Network for 3D Point Cloud Classification and Semantic Segmentation
- URL: http://arxiv.org/abs/2305.15213v3
- Date: Mon, 5 Aug 2024 06:40:52 GMT
- Title: GTNet: Graph Transformer Network for 3D Point Cloud Classification and Semantic Segmentation
- Authors: Wei Zhou, Qian Wang, Weiwei Jin, Xinzhe Shi, Ying He,
- Abstract summary: graph-based and Transformer-based deep learning networks have demonstrated excellent performances on various point cloud tasks.
We propose a new feature extraction block named Graph Transformer and construct a 3D point cloud learning network called GTNet.
- Score: 10.596757615219207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, graph-based and Transformer-based deep learning networks have demonstrated excellent performances on various point cloud tasks. Most of the existing graph methods are based on static graph, which take a fixed input to establish graph relations. Moreover, many graph methods apply maximization and averaging to aggregate neighboring features, so that only a single neighboring point affects the feature of centroid or different neighboring points have the same influence on the centroid's feature, which ignoring the correlation and difference between points. Most Transformer-based methods extract point cloud features based on global attention and lack the feature learning on local neighbors. To solve the problems of these two types of models, we propose a new feature extraction block named Graph Transformer and construct a 3D point point cloud learning network called GTNet to learn features of point clouds on local and global patterns. Graph Transformer integrates the advantages of graph-based and Transformer-based methods, and consists of Local Transformer and Global Transformer modules. Local Transformer uses a dynamic graph to calculate all neighboring point weights by intra-domain cross-attention with dynamically updated graph relations, so that every neighboring point could affect the features of centroid with different weights; Global Transformer enlarges the receptive field of Local Transformer by a global self-attention. In addition, to avoid the disappearance of the gradient caused by the increasing depth of network, we conduct residual connection for centroid features in GTNet; we also adopt the features of centroid and neighbors to generate the local geometric descriptors in Local Transformer to strengthen the local information learning capability of the model. Finally, we use GTNet for shape classification, part segmentation and semantic segmentation tasks in this paper.
Related papers
- GSTran: Joint Geometric and Semantic Coherence for Point Cloud Segmentation [33.72549134362884]
We propose GSTran, a novel transformer network tailored for the segmentation task.
The proposed network mainly consists of two principal components: a local geometric transformer and a global semantic transformer.
Experiments on ShapeNetPart and S3DIS benchmarks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-08-21T12:12:37Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Transitivity-Preserving Graph Representation Learning for Bridging Local
Connectivity and Role-based Similarity [2.5252594834159643]
We propose Unified Graph Transformer Networks (UGT) that integrate local and global structural information into fixed-length vector representations.
First, UGT learns local structure by identifying the local substructures and aggregating features of the $k$-hop neighborhoods of each node.
Third, UGT learns unified representations through self-attention, encoding structural distance and $p$-step transition probability between node pairs.
arXiv Detail & Related papers (2023-08-18T12:49:57Z) - VTPNet for 3D deep learning on point cloud [10.470127366415813]
Voxel-Transformer-Point (VTP) Block for extracting local and global features of point clouds.
VTP combines the advantages of voxel-based, point-based and Transformer-based methods.
Experiments indicate that VTPNet has good performance in 3D point cloud learning.
arXiv Detail & Related papers (2023-05-10T13:07:46Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
We propose SemAffiNet for point cloud semantic segmentation.
We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets.
arXiv Detail & Related papers (2022-05-26T17:00:23Z) - CpT: Convolutional Point Transformer for 3D Point Cloud Processing [10.389972581905]
We present CpT: Convolutional point Transformer - a novel deep learning architecture for dealing with the unstructured nature of 3D point cloud data.
CpT is an improvement over existing attention-based Convolutions Neural Networks as well as previous 3D point cloud processing transformers.
Our model can serve as an effective backbone for various point cloud processing tasks when compared to the existing state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-21T17:45:55Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.