GSTran: Joint Geometric and Semantic Coherence for Point Cloud Segmentation
- URL: http://arxiv.org/abs/2408.11558v1
- Date: Wed, 21 Aug 2024 12:12:37 GMT
- Title: GSTran: Joint Geometric and Semantic Coherence for Point Cloud Segmentation
- Authors: Abiao Li, Chenlei Lv, Guofeng Mei, Yifan Zuo, Jian Zhang, Yuming Fang,
- Abstract summary: We propose GSTran, a novel transformer network tailored for the segmentation task.
The proposed network mainly consists of two principal components: a local geometric transformer and a global semantic transformer.
Experiments on ShapeNetPart and S3DIS benchmarks demonstrate the effectiveness of the proposed method.
- Score: 33.72549134362884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning meaningful local and global information remains a challenge in point cloud segmentation tasks. When utilizing local information, prior studies indiscriminately aggregates neighbor information from different classes to update query points, potentially compromising the distinctive feature of query points. In parallel, inaccurate modeling of long-distance contextual dependencies when utilizing global information can also impact model performance. To address these issues, we propose GSTran, a novel transformer network tailored for the segmentation task. The proposed network mainly consists of two principal components: a local geometric transformer and a global semantic transformer. In the local geometric transformer module, we explicitly calculate the geometric disparity within the local region. This enables amplifying the affinity with geometrically similar neighbor points while suppressing the association with other neighbors. In the global semantic transformer module, we design a multi-head voting strategy. This strategy evaluates semantic similarity across the entire spatial range, facilitating the precise capture of contextual dependencies. Experiments on ShapeNetPart and S3DIS benchmarks demonstrate the effectiveness of the proposed method, showing its superiority over other algorithms. The code is available at https://github.com/LAB123-tech/GSTran.
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Coupled Laplacian Eigenmaps for Locally-Aware 3D Rigid Point Cloud Matching [0.0]
We propose a new technique, based on graph Laplacian eigenmaps, to match point clouds by taking into account fine local structures.
To deal with the order and sign ambiguity of Laplacian eigenmaps, we introduce a new operator, called Coupled Laplacian.
We show that the similarity between those aligned high-dimensional spaces provides a locally meaningful score to match shapes.
arXiv Detail & Related papers (2024-02-27T10:10:12Z) - GTNet: Graph Transformer Network for 3D Point Cloud Classification and Semantic Segmentation [10.596757615219207]
graph-based and Transformer-based deep learning networks have demonstrated excellent performances on various point cloud tasks.
We propose a new feature extraction block named Graph Transformer and construct a 3D point cloud learning network called GTNet.
arXiv Detail & Related papers (2023-05-24T14:51:18Z) - Full Point Encoding for Local Feature Aggregation in 3D Point Clouds [29.402585297221457]
We propose full point encoding which is applicable to convolution and transformer architectures.
The key idea is to adaptively learn the weights from local and global geometric connections.
We achieve state-of-the-art semantic segmentation results of 76% mIoU on S3DIS 6-fold and 72.2% on S3DIS Area5.
arXiv Detail & Related papers (2023-03-08T09:14:17Z) - LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context
Propagation in Transformers [60.51925353387151]
We propose a novel module named Local Context Propagation (LCP) to exploit the message passing between neighboring local regions.
We use the overlap points of adjacent local regions as intermediaries, then re-weight the features of these shared points from different local regions before passing them to the next layers.
The proposed method is applicable to different tasks and outperforms various transformer-based methods in benchmarks including 3D shape classification and dense prediction tasks.
arXiv Detail & Related papers (2022-10-23T15:43:01Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
We propose SemAffiNet for point cloud semantic segmentation.
We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets.
arXiv Detail & Related papers (2022-05-26T17:00:23Z) - Stratified Transformer for 3D Point Cloud Segmentation [89.9698499437732]
Stratified Transformer is able to capture long-range contexts and demonstrates strong generalization ability and high performance.
To combat the challenges posed by irregular point arrangements, we propose first-layer point embedding to aggregate local information.
Experiments demonstrate the effectiveness and superiority of our method on S3DIS, ScanNetv2 and ShapeNetPart datasets.
arXiv Detail & Related papers (2022-03-28T05:35:16Z) - Augmenting Convolutional networks with attention-based aggregation [55.97184767391253]
We show how to augment any convolutional network with an attention-based global map to achieve non-local reasoning.
We plug this learned aggregation layer with a simplistic patch-based convolutional network parametrized by 2 parameters (width and depth)
It yields surprisingly competitive trade-offs between accuracy and complexity, in particular in terms of memory consumption.
arXiv Detail & Related papers (2021-12-27T14:05:41Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.