Sin3DM: Learning a Diffusion Model from a Single 3D Textured Shape
- URL: http://arxiv.org/abs/2305.15399v2
- Date: Wed, 21 Feb 2024 01:25:36 GMT
- Title: Sin3DM: Learning a Diffusion Model from a Single 3D Textured Shape
- Authors: Rundi Wu, Ruoshi Liu, Carl Vondrick, Changxi Zheng
- Abstract summary: We present Sin3DM, a diffusion model that learns the internal patch distribution from a single 3D textured shape.
We show that our method outperforms prior methods in generation quality of 3D shapes.
- Score: 46.31314488932164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthesizing novel 3D models that resemble the input example has long been
pursued by graphics artists and machine learning researchers. In this paper, we
present Sin3DM, a diffusion model that learns the internal patch distribution
from a single 3D textured shape and generates high-quality variations with fine
geometry and texture details. Training a diffusion model directly in 3D would
induce large memory and computational cost. Therefore, we first compress the
input into a lower-dimensional latent space and then train a diffusion model on
it. Specifically, we encode the input 3D textured shape into triplane feature
maps that represent the signed distance and texture fields of the input. The
denoising network of our diffusion model has a limited receptive field to avoid
overfitting, and uses triplane-aware 2D convolution blocks to improve the
result quality. Aside from randomly generating new samples, our model also
facilitates applications such as retargeting, outpainting and local editing.
Through extensive qualitative and quantitative evaluation, we show that our
method outperforms prior methods in generation quality of 3D shapes.
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - 3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors [85.11117452560882]
We present a two-stage text-to-3D generation system, namely 3DTopia, which generates high-quality general 3D assets within 5 minutes using hybrid diffusion priors.
The first stage samples from a 3D diffusion prior directly learned from 3D data. Specifically, it is powered by a text-conditioned tri-plane latent diffusion model, which quickly generates coarse 3D samples for fast prototyping.
The second stage utilizes 2D diffusion priors to further refine the texture of coarse 3D models from the first stage. The refinement consists of both latent and pixel space optimization for high-quality texture generation
arXiv Detail & Related papers (2024-03-04T17:26:28Z) - Neural Point Cloud Diffusion for Disentangled 3D Shape and Appearance Generation [29.818827785812086]
Controllable generation of 3D assets is important for many practical applications like content creation in movies, games and engineering, as well as in AR/VR.
We present a suitable representation for 3D diffusion models to enable disentanglement by introducing a hybrid point cloud and neural radiance field approach.
arXiv Detail & Related papers (2023-12-21T18:46:27Z) - CAD: Photorealistic 3D Generation via Adversarial Distillation [28.07049413820128]
We propose a novel learning paradigm for 3D synthesis that utilizes pre-trained diffusion models.
Our method unlocks the generation of high-fidelity and photorealistic 3D content conditioned on a single image and prompt.
arXiv Detail & Related papers (2023-12-11T18:59:58Z) - Breathing New Life into 3D Assets with Generative Repainting [74.80184575267106]
Diffusion-based text-to-image models ignited immense attention from the vision community, artists, and content creators.
Recent works have proposed various pipelines powered by the entanglement of diffusion models and neural fields.
We explore the power of pretrained 2D diffusion models and standard 3D neural radiance fields as independent, standalone tools.
Our pipeline accepts any legacy renderable geometry, such as textured or untextured meshes, and orchestrates the interaction between 2D generative refinement and 3D consistency enforcement tools.
arXiv Detail & Related papers (2023-09-15T16:34:51Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs.
In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis.
Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.
arXiv Detail & Related papers (2022-09-29T17:50:40Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.