Classical-quantum correspondence for particles in the Penning trap
- URL: http://arxiv.org/abs/2305.15492v1
- Date: Wed, 24 May 2023 18:29:30 GMT
- Title: Classical-quantum correspondence for particles in the Penning trap
- Authors: Iwo Bialynicki-Birula and Zofia Bialynicka-Birula
- Abstract summary: We derive new solutions of the Schr"odinger equation which describe the motion of particles in the Penning trap.
These solutions are direct counterparts of classical orbits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive new solutions of the Schr\"odinger equation which describe the
motion of particles in the Penning trap. These solutions are direct
counterparts of classical orbits. They are obtained by injection of classical
trajectories into the wave functions of stationary solutions.
Related papers
- Radiative transport in a periodic structure with band crossings [52.24960876753079]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Helical beams of electrons in a magnetic field: New analytic solutions
of the Schr\"odinger and Dirac equations [0.0]
We derive new solutions of the Schr"odinger, Klein-Gordon and Dirac equations.
Our solutions exhibit the behavior of quantum particles which very closely resembles classical helical trajectories.
arXiv Detail & Related papers (2023-03-26T19:09:12Z) - Exact quantum-mechanical equations for particle beams [91.3755431537592]
These equations present the exact generalizations of the well-known paraxial equations in optics.
Some basic properties of exact wave eigenfunctions of particle beams have been determined.
arXiv Detail & Related papers (2022-06-29T20:39:36Z) - Fall of a Particle to the Center of a Singular Potential: Classical vs.
Quantum Exact Solutions [0.0]
We inspect the quantum problem with the help of the conventional Schr"odinger's equation.
Surprisingly, the quantum and classical solutions exhibit striking similarities.
arXiv Detail & Related papers (2022-02-25T11:04:39Z) - Classical analog of qubit logic based on a magnon Bose-Einstein
condensate [52.77024349608834]
We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate.
The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit.
arXiv Detail & Related papers (2021-11-12T16:14:46Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Semiclassical trajectories in the double-slit experiment [0.0]
We show the evolution of individual particles and their semiclassical trajectories, collectively reproduce the well-known quantum interference pattern.
It is found that the non-crossing rule for trajectories, present in Bohmian mechanics, is not required under our treatment.
arXiv Detail & Related papers (2021-06-07T00:15:20Z) - Quantum entanglement from classical trajectories [0.0]
A long-standing challenge in mixed quantum-classical trajectory simulations is the treatment of entanglement between the classical and quantal degrees of freedom.
We present a novel approach which describes the emergence of entangled states entirely in terms of independent and deterministic Ehrenfest-like classical trajectories.
arXiv Detail & Related papers (2021-05-05T14:19:54Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Feynman Functional Integral in the Fokker Theory [62.997667081978825]
equivalence of two formulations of Fokker's quantum theory is proved.
The common basis for the two approaches is the generalized canonical form of Fokker's action.
arXiv Detail & Related papers (2020-11-11T12:10:01Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.