論文の概要: Fast Adversarial CNN-based Perturbation Attack on No-Reference Image-
and Video-Quality Metrics
- arxiv url: http://arxiv.org/abs/2305.15544v1
- Date: Wed, 24 May 2023 20:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 18:51:56.869325
- Title: Fast Adversarial CNN-based Perturbation Attack on No-Reference Image-
and Video-Quality Metrics
- Title(参考訳): 非参照画像とビデオ品質メトリクスに対する高速CNNによる摂動攻撃
- Authors: Ekaterina Shumitskaya, Anastasia Antsiferova, Dmitriy Vatolin
- Abstract要約: 非参照品質指標に対する高速な敵攻撃を提案する。
提案した攻撃は、リアルタイムビデオ処理および圧縮アルゴリズムにおける前処理ステップとして利用することができる。
この研究は、安定したニューラルネットワークベースの非参照品質メトリクスの設計にさらなる支援を与えることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern neural-network-based no-reference image- and video-quality metrics
exhibit performance as high as full-reference metrics. These metrics are widely
used to improve visual quality in computer vision methods and compare video
processing methods. However, these metrics are not stable to traditional
adversarial attacks, which can cause incorrect results. Our goal is to
investigate the boundaries of no-reference metrics applicability, and in this
paper, we propose a fast adversarial perturbation attack on no-reference
quality metrics. The proposed attack (FACPA) can be exploited as a
preprocessing step in real-time video processing and compression algorithms.
This research can yield insights to further aid in designing of stable
neural-network-based no-reference quality metrics.
- Abstract(参考訳): 現代のニューラルネットワークベースのノン参照画像とビデオ品質メトリクスは、フル参照メトリクスのパフォーマンスを示している。
これらの指標はコンピュータビジョン法における視覚的品質の向上やビデオ処理法の比較に広く用いられている。
しかし、これらの指標は従来の敵攻撃には安定せず、誤った結果をもたらす可能性がある。
本研究の目的は、非参照指標の適用性の境界について検討することであり、本稿では、非参照品質指標に対する高速な対向摂動攻撃を提案する。
提案した攻撃(FACPA)は,リアルタイムビデオ処理および圧縮アルゴリズムの前処理ステップとして利用することができる。
この研究は、安定したニューラルネットワークベースの非参照品質メトリクスの設計にさらなる支援を与えることができる。
関連論文リスト
- Towards Robust Text-Prompted Semantic Criterion for In-the-Wild Video
Quality Assessment [54.31355080688127]
コントラスト言語画像事前学習(CLIP)を用いたテキストプロンプト付きセマンティック親和性品質指標(SAQI)とそのローカライズ版(SAQI-Local)を導入する。
BVQI-Localは前例のないパフォーマンスを示し、すべてのデータセットで既存のゼロショットインデックスを少なくとも24%上回る。
我々は、異なる指標の異なる品質問題を調べるために包括的な分析を行い、設計の有効性と合理性を示す。
論文 参考訳(メタデータ) (2023-04-28T08:06:05Z) - AccDecoder: Accelerated Decoding for Neural-enhanced Video Analytics [26.012783785622073]
低画質のビデオは、品質の悪いカメラや、過度に圧縮/切断されたビデオストリーミングプロトコルのために、既存の監視システムによって収集される。
AccDecoderは、リアルタイムおよびニューラルネットワークベースのビデオ分析のための新しいアクセラレーションデコーダである。
論文 参考訳(メタデータ) (2023-01-20T16:30:44Z) - Video compression dataset and benchmark of learning-based video-quality
metrics [55.41644538483948]
本稿では,ビデオ圧縮の評価を行うビデオ品質指標の新しいベンチマークを提案する。
これは、異なる標準でエンコードされた約2,500のストリームからなる、新しいデータセットに基づいている。
クラウドソーシングによるペアワイズ比較により,主観的スコアを収集した。
論文 参考訳(メタデータ) (2022-11-22T09:22:28Z) - Universal Perturbation Attack on Differentiable No-Reference Image- and
Video-Quality Metrics [0.0]
一部の攻撃は、画像品質とビデオ品質のメトリクスを欺くことができる。
広汎な摂動を通して、識別可能な非参照品質指標を攻撃できる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-11-01T10:28:13Z) - A Perceptual Quality Metric for Video Frame Interpolation [6.743340926667941]
ビデオフレームの結果は、しばしばユニークな成果物であるので、既存の品質指標は、結果を測定するときに人間の知覚と一致しないことがある。
最近のディープラーニングベースの品質指標は、人間の判断とより整合性を示すが、時間的情報を考慮していないため、ビデオ上でのパフォーマンスは損なわれている。
本手法は,個々のフレームではなく,ビデオから直接知覚的特徴を学習する。
論文 参考訳(メタデータ) (2022-10-04T19:56:10Z) - NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition [89.84188594758588]
非定常フレームの応答を抑制するために, NSNet(Non-Sliency Suppression Network)を提案する。
NSNetは最先端の精度効率トレードオフを実現し、最先端の手法よりもはるかに高速な2.44.3xの実用的な推論速度を示す。
論文 参考訳(メタデータ) (2022-07-21T09:41:22Z) - Fast Online Video Super-Resolution with Deformable Attention Pyramid [172.16491820970646]
ビデオスーパーレゾリューション(VSR)には、ビデオストリーミングやテレビなど、厳格な因果性、リアルタイム、レイテンシの制約を課す多くのアプリケーションがある。
変形性アテンションピラミッド(DAP)に基づく繰り返しVSRアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-02-03T17:49:04Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - A Variational Auto-Encoder Approach for Image Transmission in Wireless
Channel [4.82810058837951]
本稿では,変分オートエンコーダの性能について検討し,その結果を標準オートエンコーダと比較する。
実験により,SSIMは受信機における再構成画像の品質を視覚的に向上することを示した。
論文 参考訳(メタデータ) (2020-10-08T13:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。